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What is Software Architecture? 

It is the structure of the system which 
consists of software components, the 
externally visible properties of those 

components and the relationship between 
them.  



Features 
•  Every System has its own architecture but they are 

not identical. 
•  Software architecture and its description are 

different. 
•  The different stakeholders are 
    1. Users of the System 
    2. Acquirers of the System 
    3. Developers of the System 
    4. Maintainers of the System             



Architecture Centered Life Cycle 



Views Used in Software Architecture 
•  Software architecture is organised in views which are 

analogous different types of blueprints made in building 
architecture. 

•   Different views are: 
o  Component and Connector view. 
o  Decomposition view. 
o  Allocation view 



Component - Connector View 



Decomposition View 



Deployment View 

Implementation 
view 

Allocation 
View 



Architectural Styles 

•  Pipes & Filters 
•  Client- Server 
•  Event Driven 
•  Hierarchical Layer 
•  Data Sharing 
•  Object Oriented 



Pipes & Filters 

•  Very Simple yet powerful and robust architecture. 
•  Examples:  
    1. Unix Programs 
    2. Compilers 
•  Components  
    1. Pipe 
    2. Filter 
    3. Pump 
    4. Sink 



Pipes & Filters Style 

Recursive Technique 



Relationship between different filter 
processes. 



Digital Communication System 

Web Application 



Another Example 



Client Server Style 

Distributed Application Architecture that 
partitions the tasks into service providers and 

service requesters  



Advantages 

•  Roles and responsibilities of computing systems to be 
distributed among independent computers known to each 
other only through the network. 

•  All the data is stored in the server which have better 
security controls. 

•  Caters to multiple different clients with different 
capabilities. 

•  Data updates are easier and faster as Data is 
centralized. 



Disadvantages 

•  As the number of client requests increases the server 
becomes overloaded  

•  Client - Server Architecture lacks the robustness of 
Peer to Peer Architecture. 

Lets look at this architecture 
implementation in ACME... 



Client - Server in ACME 



Event-Driven Architecture 

•  Architecture pattern that promotes production, 
detection, consumption of and reaction to events. 

•  It consists of event emitters and event consumers.  
•  Sinks have the responsibility of applying a reaction as 

soon as the event is presented. 

Systems have certain goal under the control of 
some message mechanism and the subsystem 

collaborates with each other to achieve system's 
ultimate goal. 



Event - Driven Architecture 



Hierarchical Layer 

•  It is a layered architecture. 
•  Each layer has 2 roles: 
    1. Provide services for the upper layers. 
    2. Call lower layers functions. 
•  Conceptual layer system model: 



Advantages of Layering 

•  Supports gradual abstraction in the system design 
process. 

•  Layer system has good extendability. 
•  Layer style supports software reuse. 



Example of a layered architecture: ISO/OSI 
network 7- layer architecture 



Data Sharing 

•  Also called repository style. 
•  System has 2 components: 
    1. Central data unit component. 
    2. Set of relatively dependent components. 
•  Central data unit called the repository shares 

information with all the other units. 
•  There are differences in the information exchange 

patterns. 
•  Thus there are 2 main control stratergies to deal with 

these information exchange patterns. 



Black-board type repository model 

The components: 
ks-knowledge sources, 
Central Data Unit, 
Control Unit. 



Example: Expert system 



Object Oriented  

•  The key features are: 
o  Data Abstraction. 
o  Modularization. 
o  Information encapsulation. 
o  Inheritance. 
o  Polymorphism. 

•  Objects in the problem are first recognized, then proper 
classes are constructed to represent these objects. 

•  Java - Object Oriented Programming, C - Procedural 
programming. 



Example of Object Oriented Architecture: 
Described using a UML diagram. 



Architecture Description Languages 

•  Computer language used to describe the software 
architecture. 

•  Shaw and Garland's description for ADL's includes- 
    1. Components. 
    2. Operators. 
    3. Patterns. 
    4. Closure. 
    5. Specification. 
•  Different ADL's existing: ACME, AADL, Darwin, 

WRIGHT. 



What makes a language an ADL? 

•  Be suitable for communicating an architecture to all the 
stake holders. 

•  Support the tasks of architecture creation, refinement 
and validation. 

•  Provide the ability to represent most common 
architectural styles. 

•  Support analytical capabilities. 
•  Provide quick generating prototype implementations. 



Darwin 
•  Declarative Language. 
•  Describes the organization of software in terms of 

components, their interfaces and their binding components 
between them. 

•  Provides general purpose notations for specifying the structure 
of the system. 

•  Focuses on specification of distributed software system. 
•  Supports the specifications of dynamic structures. 



Client Server System in Darwin 



Filter Component in Darwin 



Conclusion-I 

•  Common attribute in all the architectural slides - 
extendibility. 

•  Good software - closed for change, open for extension. 
•  Each style has its good quality attributes at the cost of 

sacrificing other quality attributes. 
o  Pipes and filters style has bad interactivity while 

event driven style has good support for user 
interactivity. 

o  In event driven style its hard to share common data, 
while repositories has advantage of data sharing. 



Conclusion-II 
•  Maximum benefit of software architectural styles can 

be achieved by the integration of different styles. 
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Software Architectures for Shared
Information Systems,

Abstract: Software system design takes place at many levels. Different
kinds of design elements, notations, and analyses distinguish these
levels. At the software architecture level, designers combine subsystems
into complete systems. This paper studies some of the common patterns,
or idioms, that guide these configurations. Results from software
architecture offer some insight into the problems of systems integration-
the task of connecting individual, isolated, pre-existing software systems
to provide coherent, distributed solutions to large problems. As
computing has become more sophisticated, so too have the software
structures used in the integration task. This paper reviews historical
examples of shared information systems in three different applications
whose requirements share some common features about collecting,
manipulating, and preserving large bodies of complex information.
These applications have similar architectural histories in which a
succession of designs responds to new technologies and new
requirements for flexible, highly dynamic responses. A common pattern,
the shared information system evolution pattern, appears in all three
areas.

1. Introduction

Software system design takes place at many levels, each with its own concerns.
We learn from computer hardware design that each of these levels has its own
elements and composition operators and its own notations, analysis tools, and
design rules. From the 1960s through the 1980s software developers
concentrated on the programming level. At this level, so-called higher-level
programming languages provide for the definitions of algorithms and data
structures using the familiar programming language control statements, types,
and procedures. Now we are turning our attention to the architectural level, in
which patterns for organizing module-scale components guide software system
design.

1To appear in Mind Matters: Contributions to Cognitive and Computer Science in Honor of Allen
Newell. David Steier and Tom Mitchell (eds.), Hillsdale, N.J.: Lawrence Eribaum Associates (to
appear).
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1.1 Systems Integration

Large software systems are often integrated from pre-existing systems. The
designer of such a system must accommodate very different-often
incompatible-conceptual models, representations, and protocols in order to
create a coherent synthesis. Systems integration is a problem-solving activity
that entails harnessing and coordinating the power and capabilities of
information technology to meet a customer's needs. It develops megasystems in
which pre-existing independent systems become subsystems--components
that must interact with other components. Successful integration requires
solution of both organizational and technical problems:

"* understanding the current organizational capabilities and processes

"* re-engineering and simplification of processes with a system view

"* standardizing on common data languages and system architectures

"• automation of processes and systems

Five kinds of issues motivate companies to invest in systems integration (CSTB
1992, pp. 16-21):

"• For many organizations, experiences with information technology have
not lived up to expectations.

"• The proliferation of information technology products and vendors has
produced the need for connectivity and interoperability.

"• An installed base of information technology has to accommodate new
technology and new capabilities.

"* Advances in technology, combined with growing appreciation of what
can be accomplished with that technology, have prompted firms to
search for new applications and sources of competitive advantage.

" In an increasingly global economy, firms must rely on
telecommunications and information technology to manage and
coordinate their operations and to stay abreast of international
competitors.

Corporate mergers and reorganizations, in particular, create needs for
compatibility among systems developed under different assumptions about
representation and interaction. The task is difficult: it involves large, untidy
problems; incomplete, imprecise, and inconsistent requirements; and "legacy"
systems that must be retained rather than replaced. For systems integration to
be useful, it must be globally effective within the organization. The focus of this
paper is on the enabling technologies rather than the organizational questions.

The essential enabling technologies are of several kinds (CSTB 1992, Nilsson
et al 1990):
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" Architecture: System organization; kinds of components, kinds of
interactions, and patterns of overall organization; ability to evolve;
consistency with available modular building blocks for hardware,
software, and databases; standardization and open systems

"* Semantics: Representations; conceptual consistency; semantic
models; means for handing inconsistencies

"* Connectivity: Mechanisms for moving data between systems and
initiating action in other systems; communication platforms with flexible
linkages or interfaces; network management and reliability; security

"* Interaction: Granularity; user interfaces; interoperability; simplicity;
underlying consistency of presentation

The technologies for architecture are of primary interest here; to a certain extent
these are inseparable from semantics.

1.2 Shared Information Systems

One particularly significant class of large systems is responsible for collecting,
manipulating, and preserving large bodies of complex information. These are
shared information systems. Systems of this kind appear in many different
domains; this paper examines three. The earliest shared information systems
consisted of separate programs for separate subtasks. Later, multiple
independent processing steps were composed into larger tasks by passing data
in a known, fixed format from one step to another. This organization is not
flexible in responding to variations or discrepancies in data. Nor is it tolerant of
structural modification, especially the addition of components developed under
different assumptions. It is also not responsive to the needs of interactive
processing, which must handle individual requests as they arrive.

Still later, often when raquirements for interaction appear, new organizations
allowed independent processing subsystems to interact through a shared data
store. While this organization is an improvement, it still encounters integration
problems-especially when multiple data stores with different representations
must be shared, when the system is distributed, when many user tasks must be
served, and when the suite of processing and data subsystems changes
regularly. Several newer approaches now compensate for these differences in
representation and operating assumptions, but the problem is not completely
solved. A common pattern, the shared information system evolution pattern, is
evident in the application areas examined here.

CMU/SEI-93-TR-3 3



1.3 Design Levels

System design takes place at many levels. It is useful to make precise
distinctions among those levels, for each level appropriately deals with different
design concerns. At each level we find components, both primitive and
composite; rules of composition that allow the construction of nonprimitive
components, or systems; and rules of behavior that provide semantics for the
system (Bell and Newell 1971, Newell 1982, Newell 1990). Since these differ
from one level to another, we also find different notations, design problems, and
analysis techniques at each level. As a result, design at one level can proceed
substantially autonomously of any other level. But levels are also related, in
that elements at the base of each level correspond to-are implemented by-
constructs of the level below.

The hierarchy of levels for computer hardware systems is familiar and appears
in Figure 1 (Bell and Newell 1971, p. 3). Note first that each level deals with
different content. Different kinds of structures guide design with different sets of
components. Different notations, analysis techniques, and design issues
accompany the differences of content matter. Note also that each level admits
of substructure: abstraction and composition take place within each level, in
terms of the components and structures of that level. In addition, there is an
established transformation from the primitive components at the bottom of each
level to (probably nonprimitive) components of the level below.
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Structures: Network/N, computer/C

.9 Components: Processors/P. memories/M,
(A switches IS. controls/K, transducers / r,

data operators /0, links/L
06

Structure: Programs, subprograms

Components: State (memory ceils),
instructions, operators, controls,
interpreter ,

Circuits: Arithmetic unit

Components: Registers, transfers,
4 controls, data operators (+.-,etc.)

Circuits: Counters, controls, sequential Stae
transducer, function generator, system
register arrays le

Components: Flip-flops-., reset-set/ ,
RS, JK, delay/0, toggle/r, latch,
delay, one shot ,

distributors, iterative networks I Components:
, , ,, , ' ,I states, inputs,

Components:ANO. OR, NOT. NANO, NOR I outputs

Circuits: Amplifiers, delays, attenuators,

multivibrators, clocks, gates, differentiator

Active components: Relays, vacu•im tubes,
transistors

Passive components: Resistor/ R, capacitor/
C, inducter/k. diode, delay lines

Figure 1: Computer hardware design levels
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Software, too, has its design levels. We can identify at least

" Architecture, where the design issues involve overall association of
system capability with components; components are modules, and
interconnections among modules are handled in a variety of ways, all
of which seem to be expressed as explicit sets of procedure calls.

" Code, where the design issues involve algorithms and data structures;
the components are programming language primitives such as
numbers, characters, pointers, and threads of control; primitive
operators are the arithmetic and data manipulation primitives of the
language; composition mechanisms include records, arrays, and
procedures.

" Executable, where the design issues involve memory maps, data
layouts, call stacks, and register allocations; the components are bit
patterns supported by hardware, and the operations and compositions
are described in machine code.

These roughly track the higher levels of hardware design. The executable and
code levels for software are well understood. However, the architecture level is
currently understood mostly at the level of intuition, anecdote, and folklore. It is
common for a description of a software system to include a few paragraphs of
text and a box-and-line diagram, but there is neither uniform syntax nor uniform
semantics for interpreting the prose and the diagrams. Our concern here is in
improving understanding and precision at the software architecture level. At
this level the components are programs, modules, or systems; a rich collection
of interchange representations and protocols connect the components; and
well-known system patterns guide the compositions (Garlan and Shaw 1993).

1.4 External Software Systems

Recent work on intelligent integration of external software systems offers some
hope for improving the sophistication of our integration techniques. Newell and
Steier (1991) suggest that the work on agent-ESS systems may contribute to
software engineering by making the power of computer software more easily
accessible in the service of computational tasks. An intelligent system would
learn to recognize aberrations when they arise and compensate for them, and it
would adapt to new protocols and representations when the suitq of available
components changes.

This paper explores what happens when independent systems become
components of larger systems. It examines three examples of shared
information systems:
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"• Data processing, driven primarily by the need to build business
decision systems from conventional databases

"* Software development environments, driven primarily by the need to
represent and manipulate programs and their designs.

"* Building design, driven primarily by the need to couple independent
design tools to allow for the interactions of their results in structural
design

We will see how the software architectures of these systems changed as
technology and demands on system performance changed. We close by
surveying the architectural constructs used to describe the examples and
examining the prospects for intelligent integration.

CMU/SEI-93-TR-3 7
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2. Database Integration

Business data processing has traditionally been dominated by database
management, in particular by database updates. Originally, separate
databases served separate purposes, and implementation issues revolved
around efficient ways to do massive coordinated periodic updates. As time
passed, interactive demands required individual transactions to complete in
real time. Still later, as databases proliferated and organizations merged,
information proved to have value far beyond its original needs. Diversity in
representations and interfaces arose, information began to appear redundantly
in multiple databases, and geographic distribution added communication
complexity. As this happened, the challenges shifted from individual
transaction processing to integration.

Individual database systems must support transactions of predetermined types
and periodic summary reports. Bad requests require a great deal of special
handling. Originally the updates and summary reports were collected into
batches, with database updates and reports produced during periodic batch
runs. However, when interactive queries became technologically possible, the
demand for interaction made generated demand for on-line processing of both
individual requests and exceptions. Reports remained on roughly the same
cycles as before, so reporting became decoupled from transaction processing.

As databases became more common, information about a business became
distributed among multiple databases. This offered new opportunities for the
data to become inconsistent and incomplete. In addition, the representations,
or schemas, for different databases were usually different; even the portion of
the data shared by two databases is likely to have representations in each
database. The total volume of data to handle is correspondingly larger, and it is
often distributed across multiple machines. Two general strategies emerged for
dealing with data diversity: unified schemas and multi-databases.

2.1. Batch Sequential

Some of the earliest large computer applications were databases. In these
applications individual database operations-transactions-were collected into
large batches. The application consisted of a small number of large standalone
programs that performed sequential updates on flat (unstructured) files. A
typical organization included:

• a massive edit program, which accepted transaction inputs and
performed such validation as was possible without access to the
database

CMU/SEI-93-TR-3 9



"* a massive transaction sort, which got the transactions into the same
order as the records on the sequential master file

"• a sequence of update programs, one for each master file; these huge
programs actually executed the transactions by moving sequentially
through the master file, matching each type of transaction to its
corresponding account and updating the account records

"• a print program that produced periodic reports

The steps were independent of each other; they had to run in a fixed sequence;
each ran to completion, producing an output file in a new format, before the next
step began. This is a batch sequential architecture. The organization of a
typical batch sequential update system appears in Figure 2 (Best 1990, p. 29).
This figure also shows the possibility of on-line queries (but not modifications).
In this structure the files to support the queries are reloaded periodically, so
recent transactions (e.g., within the past few days) are not reflected in the query
responses.

Fpgure 2: Data TAow SagCT Ior batdp databses
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Figure 2 is a Yourdon data flow diagram. Processes are depicted as circles, or

"bubbles"; data flow (here, large files) is depicted with arrows, and data stores
such as computer files are depicted with parallel lines. This notation

conventional in this application area for showing the relations among processes
and data flow. Within a bubble, however, the approach changes. Figure 3

(Best 1990, p.150) shows the internal structure of an update process. There is
one of these for each of the master data files, and each is responsible for

handling all possible updates to that data file.

TRANSAC•TION
DRIVER

DRIVER PROGRAM
FUNCTIONS

(GENERIC TO AU. APR ICAT'10td
"ACCESSBATCH

NEXT RANS"UNIMU
MOO~t.EFUNCTIONS

------------------------------------- ------- ------ ------- ---------

SUBPROGRAM CONSSTECv ACC1T417I ACCOWNT4ATEM ACOWIATEM

FUNCTIONS A=83 VALDATmI PWThiSUSRORAd K•M1111100" StAPROGRAM sw!IrOONU
PECIFC TO NE

APPLICA7TMRANSAMr"P

NOTE: TIE DRI.ER CALLS A DIFERENT ET OF SLJIPROGRAMS FOR EACN lrRUANCTlON TypE

Figure 3: Internal sicture of batch update process
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In Figure 3, the boxes represent subprograms and the lines represent
procedure calls. A single driver program processes all batch transactions.
Each transaction has a standard set of subprograms that check the transaction
request, access the required data, validate the transaction, and post the result.
Thus all the program logic for each transaction is localized in a single set of
subprograms. The figure indicates that the transaction-processing template is
replicated so that each transaction has its own set. Note the difference even in
graphical notation as the design focus shifts from the architecture to the code
level.

The essential-batch sequential-parts of Figure 2 are redrawn in Figure 4 in a
form that allows comparison to other architectures. The redrawn figure
emphasizes the sequence of operations to be performed and the completion of
each step before the start of its successor. It suppresses the on-line query
support and updates to multiple master files, or databases.

a tape

Figure 4: Batch sequential database architecture

2.2. Simple Repository

Two trends forced a change away from batch sequential processing. First,
interactive technology provided the opportunity and demand for continuous
processing of on-line updates as well as on-line queries. On-line queries of
stale data are not very satisfactory; interaction requires incremental updates of
the database, at least for on-line transactions (there is less urgency about
transactions that arrive by slow means such as mail, since they have already
incurred delays). Second, as organizations grew, the set of transactions and
queries grew. Modifying a single large update program and a single large
reporting program for each change to a transaction creates methodological
bottlenecks. New types of processing were added often enough to discourage
modification of a large update program for each new processing request. In
addition, starting up large programs incurred substantial overheads at that time.

These trends led to a change in system organization. Figure 5 (Best 1990, p.
81) shows a "modern!-that is, interactive-system organization. The notation
is as for Figure 2. This organization supports both interactive and batch
processing for all transaction types; updates can occur continuously. Since
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these are no longer periodic operations, the system also provides for periodic
operations. Here, though, the transaction database and extract database are
transient buffers; the account/item database is the central permanent store. The
transaction database serves to synchronize multiple updates. The extract
database solves a problem created by the addition of interactive processing-
namely the loss of synchronization between the updating and reporting cycles.
This figure obscures not only the difference between a significant database and
a transient buffer but also the separation of transactions into separate
processes.

DIRECT INPUT

/ \ ON-UNE

2ON-UNE INFORMATION
ON-UNE INOUIRY

VAUDATION
AND

UPDATE

ACCOUNTATEM

TRANSACTION E ADATABASE C6

DATABSEC EXCEPTIEONP'E

OUTPUT

Figure 5: Data fow diagram for interactive database
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It is possible for transaction processing in this organization to resemble batch
sequential processing. However, it is useful to separate the general overhead
operations from the transaction-specific operations. It may also be useful to
perform multiple operations on a single account all at once. Figure 6 (Best
1990, p.158) shows the program structure for the transactions in this new
architecture. Since the transactions now exist individually rather than as
alternatives within a single program, several of the bubbles in Figure 5 actually
represent sets of independent bubbles.

DAMA •T= IAT*A.•I'II
UPAT u,.%••1PtoRT,• I

DRIVER PROGRAM
FUNCTIONS W.OT F

SUBPROGRAM UDT

FUNCTIONSo
ISPECIM TO ONE 1 ý T
WPICATIONITRNASAMT"

NOTE: ONE DRIE PROGRAM FOR EACH FLE PROCESSED SEOUENTIALULV

Figure 6: Internal structure of interactive update process
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There is not a clean separation of architectural issues from coding issues in
Figures 5 and 6. It is not unusual to find this, because explicit attention to the
architecture as a separate level of software design is relatively recent. Indeed,
Figures 5 and 6 suffer from information overload as well. The system structure
is easier to understand if we first isolate the database updates. Figure 7
focuses narrowly on the database and its transactions. This is an instance of a
fairly common architecture, a repository, in which shared persistent data is
manipulated by independent functions each of which has essentially no
permanent state. It is the core of a database system. Figure 8 adds two
additional structures. The first is a control element that accepts the batch or
interactive stream of transactions, synchronizes them, and selects which update
or query operations to invoke, and in which order. This subsumes the
transaction database of Figure 5. The second is a buffer that serves the
periodic reporting function. This subsumes the extract database of Figure 5.

transi trans3
trans3

Database

Figure 7: Simple repository database architecture

Databas

Figure 8: Repository architecture for database showing control and reporting
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2.3. Virtual Repository

As organizations grew, databases came to serve multiple functions. Since this
was usually a result of incremental growth, individual independent programs
continued to h~e the locus of processing. In response, simple repositories gave
way to databases that supported multiple views through schemas. Corporate
reorganizations, mergers, and other consolidations of data forced the joint use
of multiple databases. As a result, information could no longer be localized in a
single database. Figure 9 (Kim and Seo 1991, p.13) gives a hint of the extent of
the problem through the schemas that describe books in tour libraries. Note, for
example, that the call number is represented in different ways in all four
schemas; in this case they're all Ubrary of Congress numbers, so the more
difficult case of a mixture of Library of Congress and Dewey numbering doesn't
arise. Note also the assortment of ways the publisher's name, address, and
(perhaps) telephone number are represented.

Library Table ntame Attributes General descripi iwwt

CDs I -Main
(main l.ibrary) item (if*. title. autblorname, subject. IMp. language) Library items

k-nurn (I10. c-letter. l'-digit. s-dilIt. culttcerinS UI'rary of Consiess
numiber

publisher (40. name. icl. street. city, sip. slate. country) Pubi~shers
lend-into (100. lenld-period. library. use -only. cliecked-omi) Lending

I Information
checkout-inl, (it*, id-num. hour, day, month. year) Dortower and due

date
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Developing applications that rely on multiple diverse databases like these
requires solution of two problems. First, the system must reconcile
representation differences. Second, it must communicate results across
distributed systems that may have not only different data representations but
also different database schema representations. One approach to the
unification of multiple schemas is called the federated approach. Figure 10
(Ahmed et al 1991, p. 21) shows one way to approach this, relying on the well-
understood technology for handling multiple views on databases. The top of
this figure shows how the usual database mechanisms integrate multiple
schemas into a single schema. The bottom of the figure suggests an approach
to importing data from autonomous external databases: For each database,
devise a schema in its native schema language that exports the desired data
and a matching schema in the schema language of the importer. This
separates the solutions to the two essential problems and restricts the
distributed system problem to communication between matching schemas.

a Integrated scceman

Database IntegratedIntegration schema x

Ntive I m I mport IE

Figuem 10:combnIn shmulil di2iue schema n

9 
3Nativ1

database

I %

• Local L alLocal %
• schema 1 schoema' 2 schema n I

Full Full
autonomy autonomy

• 1"1 IEEE

Figure TO: Combining multiple distributed schemas
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Figure 10 combines solutions to two problems. Here again, the design is
clearer if the discussion and diagram separate the two sets of concerns. Figure
11 shows the integration of multiple databases by unified schemas. It shows a
simple composition of projections. The details about whether the data paths are
local or distributed and whether the local schema and import schema are
distinct are suppressed at this level of abstraction; these communication
questions should be addressed in an expansion of the abstract filter design
(and they may not need to be the same for all of the constituents).

Figure 11: Integration of multiple databases

2.4. Hierarchical Layers

Unified schemas allow for merger of information, but their mappings are fixed,
passive, and static. The designers of the views must anticipate all future needs;
the mappings simply transform the underlying data; and there are essentially no
provisions for recognizing and adapting to changes in the set of available
databases. In the real world, each database serves multiple users, and indeed
the set of users changes regularly. The set of available databases also
changes, both because the population of databases itself changes and
because network connectivity changes the set that is accessible. This
exacerbates the usual problems of inconsistency across a set of databases. The
commercial database community has begun to respond to this problem of
dynamic reconfiguration. Distributed database products organized on a client-
server model are beginning to challenge traditional mainframe database
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management systems (Hovaness 1992). This set of problems is also of current

interest in the database research community.

Figure 12 (Wiederhold 1992, p. 45) depicts one research scenario for active

mediation between a constantly-changing set of users and a constantly-

changing set of databases. Wiederhold proposes introducing active programs,
called experts, to accept queries from users, recast them as queries to the

available databases, and deliver appropriate responses to the users. These

experts, or active mediators, localize knowledge about how to discover what

databases are available and interact with them, about how to recast users'
,ueries in useful forms, and about how to reconcile, integrate, and interpret

information from multiple diverse databases.

Queryl Relevant responses" lnspection1l

Meator' Mediator ... Meato/r I Mediator m4.- Experts

Formatted queryI. Bulky responses Triggered events, T

'atabase w-.. Database x a.. Dataoasez : Da

All Nmodues are distributed over nationwide networks.

Figure 12: Muftidatabase with mediators
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In effect, Wiederhold's architecture uses hierarchical layers to separate the
business of the users, the databases, and the mediators. The interaction
between layers of the hierarchy will most likely be a client-server relation. This
is not a repository because there is no enforced coherence of central shared
data; it is not a batch sequential system (or any other form of pipeline) because
the interaction with the data is incremental. Figure 13 recasts this in a form
similar to the other examples.

Users

Client-Server.......... .. .. ..... ..........
Mediators

Client-Server

Databases. . ..... ,.

Figure 13: Layered architecture for multidatabase

2.5. Evolution of Shared Information Systems in Business Data
Processing

These business data processing applications exhibit a pattern of development
driven by changing technology and changing needs. The pattern was:

* Batch processing: Standalone programs; results are passed from one
to another on magtape. Batch sequential model.

• Interactive processing: Concurrent operation and faster updates
preclude batching, so updates are out of synchronization with reports.
Repository model with external control.

* Unified schemas: Information becomes distributed among many
different databases. One virtual repository defines (passive) consistent
conversion mappings to multiple databases.
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* Multi-database: Databases have many users; passive mappings don't
suffice; active agents mediate interactions. Layered hierarchy with
client-server interaction.

In this evolution, technological progress and expanding demand drive progress.
Larger memories and faster processing enable access to an ever-wider
assortment of data resources in a heterogeneous, distributed world. Our ability
to exploit this remains limited by volume, complexity of mappings, the need to
handle data discrepancies, and the need for sophisticated interpretation of
requests for services and of available data.

CMU/SEI-93-TR.3 21



22 CMU/SEI.93-TR-3



3. Integration In Software Development Environments

Software development has relied on software tools for almost as long as data
processing has relied on on-line databases. Initially these tools only supported
the translation from source code to object code; they included compilers,
linkers, and libraries. As time passed, many steps in the software development
process became sufficiently routine to be partially or wholly automated, and
tools now support analysis, configuration control, debugging, testing, and
documentation as well. As with databases, the individual tools grew up
independently. Although the integration problem has been recognized for
nearly two decades (Toronto 1974), individual tools still work well together only
in isolated cases.

3.1. Batch Sequential

The earliest software development tools were standalone programs. Often their
output appeared only on paper and perhaps in the form of object code on cards
or paper tape. Eventually most of the tools' results were at least in some
magnetic-universally readable-form, but the output of each tool was most
likely in the wrong format, the wrong units, or the wrong conceptual model for
other tools to use. Even today, execution profiles are customarily provided in
human-readable form but not propagated back to the compiler for optimization.
Effective sharing of information was thus limited by lack of knowledge about
how information was encoded in representations. As a result, manual
translation of one tool's output to another tool's input format was common.

As time passed, new tools incorporated prior knowledge of related tools, and
the usefulness of shared information became more evident. Scripts grew up to
invoke tools in fixed orders. These scripts essentially defined batch sequential
architectures.

This remains the most common style of integration for most environments. For
example, in unix both shell scripts and make follow this paradigm. ASCII text is
the universal exchange representation, but the conventions for encoding
internal structure in ASCII remain idiosyncratic.

3.2. Transition from Batch Sequential to Repository

Our view of the architecture of a system can change in response to
improvements in technology. The way we think about compilers illustrates this.
In the 1970s, compilation was regarded as a sequential process, and the
organization of a compiler was typically drawn as in Figure 14. Text enters at
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the left end and is transformed in a variety of ways-to lexical token stream,
parse tree, intermediate code-before emerging as machine code on the right.
We often refer to this compilation model as a pipeline, even though it was (at
least originally) closer to a batch sequential architecture in which each
transformation (upass") ran to completion before the next one started.

Figure 14: Traditional compiler model

In fact, even the batch sequential version of this model was not completely
accurate. Most compilers created a separate symbol table during lexical
analysis and used or updated it during subsequent passes. It was not part of
the data that flowed from one pass to another but rather existed outside all the
passes. So the system structure was more properly drawn as in Figure 15.

SymTab

Text x eCode

Figure 15: Traditional compiler model with symbol table

As time passed, compiler technology grew more sophisticated. The algorithms
and representations of compilation grew more complex, and increasing
attention turned to the intermediate representation of the program during
compilation. Improved theoretical understanding, such as attribute grammars,
accelerated this trend. The consequence was that by the mid-1980s the
intermediate representation (for example, an attributed parse tree), was the
center of attention. It was created early during compilation, manipulated during
the remainder, and discarded at the end. The data structure might change in
detail, but it remained substantially one growing structure throughout. However,
we continued (sometimes to the present) to model the compiler with sequential
data flow as in Figure 16.
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Figure 16: Modem canonical compiler

In fact, a more appropriate view of this structure would re-direct attention from
the sequence of passes to the central shared representation. When you
declare that the tree is the locus of compilation information and the passes
define operations on the tree, it becomes natural to re-draw the architecture as
in Figure 17. Now the connections between passes denote control flow, which
is a more accurate depiction; the rather stronger connections between the
passes and the tree/symbol table structure denote data access and
manipulation. In this fashion, the architecture has become a repository, and this
is indeed a more appropriate way to think about a compiler of this class.

ght be

Sem Opti rule-based
Syn ,Opree

Lex Treode

SymTab

Figure 17: Repository view of modem compiler
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Happily, this new view also accommodates various tools that operate on the
internal representation rather than the textual form of a program; these include
syntax-directed editors and various analysis tools.

Note that this repository resembles the database repository in some respects
and differs in others. Like the database, the information of the compilation is
localized in a central data component and operated on by a number of
independent computations that interact only through the shared data. However,
whereas the execution order of the operations in the database was determined
by the types of the incoming transactions, the execution order of the compiler is
predetermined, except possibly for opportunistic optimization.

3.3. Repository

Batch sequential tools and compilers--even when organized as repositories-
do not retain information from one use to another. As a result, a body of
knowledge about the program is not accumulated. The need for auxiliary
information about a program to supplement the various source, intermediate,
and object versions became apparent, and tools started retaining information
about the prior history of a program.

The repository of the compiler provided a focus for this data collection.
Efficiency considerations led to incremental compilers that updated the previous
version of the augmented parse tree, and some tools came to use this shared
representation as well. Figure 18 shows some of the ways that tools could
interact with a shared repository.

"* Tight coupling: Share detailed knowledge of the common, but
proprietary, representation among the tools of a single vendor

" Open representation: Publish the representation so that tools can be
developed by many sources. Often these tools can manipulate the data,
but they are in a poor position to change the representation for their
own needs.

" Conversion boxes: Provide filters that import or export the data in
foreign representations. The tools usually lose the benefits of
incremental use of the repository.

" No contact: Prevent a tool from using the repository, either explicitly,
through excess complexity, or through frequent changes.

These alternatives have different functional, efficiency, and market implications.
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Figure 18: Software tools with shared representation

3.4. Hierarchical Layers

Current work on integration emphasizes interoperability of tools, especially in
distributed systems. Figure 19 (Chen and Norman, 1992, p.19) shows one
approach, the NIST/ECMA reference model. It resembles in some ways the
layered architecture with mediators for databases, but it is more elaborate
because it attempts to integrate communications and user interfaces as well as
representation. It also embeds knowledge of software development processes,
such as the order in which tools must be used and what situations call for
certain responses.
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Note, however, that whereas this model provides for integration of data, it
provides communication and user interface services directly. That is, this model
allows for integration of multiple representations but fixes the models for user
interfaces and communication.

In one variation on the integrated-environment theme, the integration system
defined a set of "events" (e.g., "module foo.c recompiled") and provides support
for tools to announce or to receive notice of the occurrence of events. This
provides a means of communicating the need for action, but it does not solve
the central problem of sharing information.

3.5. Evolution of Shared Information Systems in Software
Development Environments

Software development ha ifferent requirements from database processing.
As compared to databases, . oftware development involves more different types
of data, fewer instances of each distinct type, and slower query rates. The units
of information are larger, more complex, and less discrete than in traditional
databases. The lifetime of software development information, however, is not
(or at least should not be) shorter than database lifetimes.

Despite the differences in application area and characteristics of the supporting
data, the essential problem of collecting, storing, and retrieving shared data
about an ongoing process is common to the two areas. It is therefore not
surprising to find comparable evolutionary stages in their architectures.

Here the forces for evolution were

"• the advent of on-line computing, which drove the shift from batch to
interactive processing for many functions

"• the concern for efficiency, which is driving a reduction in the granularity
of operations, shifting from complete processing of systems to
processing of modules to incremental development

"* the need for management control over the entire software development
process, which is driving coverage to increase from compilation to the
full life cycle

Integration in this area is still incomplete. Data conversions are passive, and
the ordering of operations remains relatively rigid. The integration systems can
exploit only relatively coarse system information, such as file and date.
Software development environments are under pressure to add capabilities for
handling complex dependencies and selecting which tools to use. Steps
toward more sophistication show up in the incorporation of metamodels to
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describe sharing, distribution, data merging, and security policies. The process-
management services of the NIST/ECMA model are not yet well developed, and
they will initially concentrate on project-level support. But integration across all
kinds of information and throughout the life cycle is on the agenda, and
intelligent assistance is often mentioned on the wish-list.
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4. Integration in Building Design

The previous two examples come from the information technology fields. For
the third example we turn to an application area, the building construction
industry. This industry requires a diverse variety of expertise. Distinct
responsibilities correspond to matching sets of specialized functions. Indeed,
distinct subindustries support these specialties. A project generally involves a
number of independent, geographically dispersed companies. The diversity of
expertise and dispersion of the industry inhibit communication and limit the
scope of responsibilities. Each new project creates a new coalition, so there is
little accumulated shared experience and no special advantage for pairwise
compatibility between companies. However, the subtasks interact in complex,
sometimes non-obvious ways, and coordination among specialties (global
process expertise) is itself a specialty (Terk 1992).

The construction community operates on divide-and-conquer problem solving
with interactions among the subproblems. This is naturally a distributed
approach; teams independent subcontractors map naturally to distributed
problem-solving systems with coarse-grained cooperation among specialized
agents. However, the separation into subproblems is forced by the need for
specialization and the nature of the industry; the problems are not inherently
decomposable, and the subproblems are often interdependent.

In this setting it was natural for computing to evolve bottom-up. Building
designers have exploited computing for many years for tasks ranging from
accounting to computer-aided design. We are concerned here with the
software that performs analysis for various stages of the design activity. The
1960s and 1970s saw a number of algorithmic systems directed at aiding in the
performance of individual phases of the facility development. However, a large
number of tasks in facility development depend on judgment, experience, and
rules of thumb accumulated by experts in the domain. Such tasks cannot be
performed efficiently in an algorithmic manner (Terk 1992).

The early stages of development, involving standalone programs and batch-
sequential compositions, are sufficiently similar to the two previous examples
that it is not illuminating to review them. The first steps toward integration
focused on support-supervisory systems, which provided basic services such as
data management and information flow control to individual independent
applications, much as software development environments did. The story picks
up from the point of these early integration efforts.
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Integrated environments for building design are frameworks for controlling a
collection of standalone applications that solve part of the building design
problem (Terk 1992). They must be

"* efficient in managing problem-solving and information exchange
"* flexible in dealing with changes to tools
"* graceful in reacting to changes in information and problem solving

strategies

These requirements derive from the lack of standardized problem-solving
procedures; they reflect the separation into specialties and the geographical
distribution of the facility development process.

4.1. Repository

Selection of tools and composition of individual results requires judgr, nt,
experience, and rules of thumb. Because of coupling between subproblems it
is not algorithmic, so integrated systems require a planning function. The goal
of an integrated environment is integration of data, design decisions, and
knowledge. Two approaches emerged: the closely-coupled Master Builder, or
monolithic system, and the design environment with cooperating tools. These
early efforts at integration added elementary data management and information
flow control to a tool-set.

The common responsibilities of a system for distributed problem-solving are:

" Problem partitioning (divide into tasks for individual agents)
" Task distribution (assign tasks to agents for best performance)
" Agent control (strategy that assures tasks are performed in organized

fashion)
"* Agent communication (exchange of information essential when

subtasks interact or conflict)

The construction community operates on divide-and-conquer problem solving
with interactions among the subproblems. This is naturally a distributed
approach; teams independent subcontractors map naturally to distributed
problem-solving systems with coarse-grained cooperation among specialized
agents. However, the nature of the industry--its need for specialization-forces
the separation into subproblems; the problems are not inherently
decomposable, and the subproblems are often interdependent. This raises the
control component to a position of special significance.

Terk (1992) surveyed and classified many of the integrated building design
environments that were developed in the 1980s. Here's what he found:
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"* Data: mostly repositories: shared common representation with

conversions to private representations of the tools

"* Communication: mostly shared data, some messaging

"* Tools: split between closed (tools specifically built for this system) and
open (external tools can be integrated)

"* Control: mostly single-level hierarchy; tools at bottom; coordination at
top

"* Planning: mostly fixed partitioning of kind and processing order; scripts
sometimes permit limited flexibility

So the typical system was a repository with a sophisticated control and planning
component. A fairly typical such system, IBDE (Fenves et al 1990) appears in
Figure 20. Although the depiction is not typical, the distinguished position of the
global data shows clearly the repository character. The tools that populate this
IBDE are

" ARCHPLAN develops architectural plan from site, budget, geometric
constraints

"* CORE lays out building service core (elevators, stairs, etc.)

"• STRYPES configures the structural system (e.g., suspension, rigid
frame, etc.)

" STANLAY performs preliminary structural design and approximate
analysis of the structural system.

"• SPEX performs preliminary design of structural comporients.

"* FOOTER designs the foundation.

"• CONSTRUCTION PLANEX generates construction schedule and
estimates cost.
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grows to be a significant problem. Indeed, as this component grows more

complex, its structure starts to dominate the repository structure of the data.
The difficulty of reducing the planning to pure algorithmic form makes this
application a candidate for intelligent control.

The Engineering Design Research Center at CMU is exploring the development
of intelligent agents that can learn to control external software systems, or
sys itemsaintended for use with interactive human intervention. Integrated
building design is one of the areas they have explored. Figure 22 (Newell and
Steier 1991) shows their design for an intelligent extension of the original IBDE
system, Soar/IBDE. That figure is easier to understand in two stages, so Figure
21 shows the relation of the intelligent agent to the external software systems
before Figure 22 adds the internal structure of the intelligent agent. Figure 21 is
clearly derived from Figure 20, with the global data moved to the status of just

another external software system. The emphasis in Soar/IBDE was control of
the interaction with the individual agents of IBDE.

From the standpoint of the designer's general position on intelligent control this
organization seems reasonable, as the agent is portrayed as interacting with
whatever software is provided. However, the global data plays a special role in
this system. Each of the seven other components must interact with the global
data (or else it makes no sense to retain the global data). Also, the intelligent
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agent may also find that the character of interaction with the global data is
special, since it was designed to serve as a repository, not to interact with
humans. Future enhancements of this system will probably need to address the
interactions among components as well as the components themselves.
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Figure 21: High-level architecture for intoelligent IBDE

Figure 22 adds the fine structure of the intelligent agent. The agent has six
major componerttq It must be able to identify and formulate subtasks for the set
of external software systems and express them in the input formats of those
systems. It must receive the output and interpret it in terms of a global overview
of the problem. It must be able to understand the actions of the components as
they work toward solution of the problem, both in terms of general' knowledge of
the task and specific knowledge of the capabilities of the set of external software
systems.

The most significant aspect of this design is that the seven external software
systems are interactive. This means that their input and output are incremental,
so a component that needs to understand their operation must retain and
update a history of the interaction. The task becomes vastly more complex
when pointer input and graphical output are included, though this is not the
case in this case.
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Figure 22: Detailed architecture for Soar/IBDE

4.3. Evolution of Shared Information Systems In Building Design

Integration in this area is less mature than in databases and software
development environments. Nevertheless, the early stages of integrated
building or facility environments resemble the early stages of the first two
examples. The evolutionary shift to layered hierarchies seems to come when
many users must select from a diverse set of tools and they need extra system
structure to coordinate the effort of selecting and managing a useful subset.
These systems have not reached this stage of development yet, so we don't yet
have information on how that will emerge.

In this case, however, the complexity of the task makes it a prime candidate for
intelligent control. This opens the question of whether intelligent control could
be of assistance in the other two examples, and if so what form it will take. The
single-agent model developed for Soar/IBDE is one possibility, but the
enrichment of database mediators to make them able of independent intelligent
action (like knowbots) is ciearly another.
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5. Architectural Structures for Shared Information Systems

While examining examples of software integration, we have seen a variety of
general architectural pattems, or idioms for software systems. In this section we
re-examine the data flow and repository idioms to see the variety that can occur
within a single idiom.

Current software tools do not distinguish among different kinds of components
at this level. These tools treat all modules equally, and they mostly assume that
modules interact only via procedure calls and perhaps shared variables. By
providing only a single model of component, they tend to blind designers to
useful distinctions among modules. Moreover, by supporting only a fixed pair of
low-level mechanisms for module interaction, they tend to blind designers to the
rich classes of high-level interactions among components. These tools certainly
provide little support for documenting design intentions in such a way that they
become visible in the resulting software artifacts.

By making the richness of these structures explicit, we focus the attention of
designers on the need for coherence and consistency of the system's design.
Incorporating this information explicitly in a system design should provide a
record that simplifies subsequent changes and increases the likelihood that
later modifications will not compromise the integrity of the design. The
architectural descriptions focus on design issues such as the gross structure of
the system, the kinds of parts from which it is composed, and the kinds of
interactions that take place.

The use of well-known patterns leads to a kind of reuse of design templates.
These templates capture intuitions that are a common part of our folklore: it is
now common practice to draw box-and-line diagrams that depict the
architecture of a system, but no uniform meaning is yet associated with these
diagrams. Many anecdotes suggest that simply providing some vocabulary to
describe parts and patterns is a good first step.

By way of recapitulation, we now examine variations on two of the architectural
forms that appear above: data flow and repositories.

5.1 Variants on Data Flow Systems

The data flow architecture that repeatedly occurs in the evolution of shared
information systems is the batch sequential pattern. However, the most familiar
example of this genre is probably the unix pipe-and-filter system. The similarity
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of these architectures is apparent in the diagrams used for systems of the
respective classes, as indicated in Figure 23. Both decompose a task into a
(fixed) sequence of computations. They interact only through the data passed
from one to another and share no other information. They assume that the
components read and write the data as a whole-that is, the input or output
contains one complete instance of the result in some standard order. There are
differences, though. Batch sequential systems are

"* very coarse-grained

"• unable to do feedback in anything resembling real time
"• unable to exploit concurrency
"* unlikely to proceed at an interactive pace

On the other hand, pipe-and-filter systems are

"* fine-grained, beginning to compute as soon as they consume a few
input tokens

"• able to start producing output right away (processing is localized in the
input stream)

"• able to perform feedback (though most shells can't express it)
"* often interactive

Figure 23 a, b: Comparison of (a) batch sequential and
(b) pipe/filter architectures

5.2. Variants on Repositories

The other architectural pattern that figured prominently in our examples was the
repository. Repositories in general are characterized by a central shared data
store coupled tightly to a number of independent computations, each with its
own expertise. The independent computations interact only through the shared
data, and they do not retain any significant amount of private state. The
variations differ chiefly in the control apparatus that controls the order in which
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the computations are invoked, in the access mechanisms that allow the
computations access to the data, and in the granularity of the operations.

Figures 7 and 8 show a database system. Here the control is driven by the
types of transactions in the input stream, the access mechanism is usually
supported by a specialized programming language, and the granularity is that
of a database transaction.

Figure 17 shows a programming language compiler. Here control is fixed
(compilation proceeds in the same order each time), the access mechanism
may be full conversion of the shared data structure into an in-memory
representation or direct access (when components are compiled into the same
address space), and the granularity is that of a single pass of a compiler.

Figure 18 shows a repository that supports independent tools. Control may be
determined by direct request of users, or it may in some cases be handled by an
event mechanism also shared by the tools. A variety of access methods are
available, and the granularity is that of the tool set.

One prominent repository has not appeared here; it is mentioned now for
completeness-to extend the comparison of repositories. This is the
blackboard architecture, most frequently used for signal-processing
applications in artificial intelligence (Nii 1986) and depicted in Figure 24. Here
the independent computations are various knowledge sources that can
contribute to solving the problem-for example, syntactic-semantic connection,
phoneme recognition, word candidate generation, and signal segmentation for
speech understanding. The blackboard is a highly-structured representation
especially designed for the representations pertinent to the application. Control
is completely opportunistic, driven by the current state of the data on the
blackboard. The abstract model for access is direct visibility, as of many human
experts watching each other solve a problem at a real blackboard
(understandably, implementations support this abstraction with more feasible
mechanisms). The granularity is quite fine, at the level of interpreting a signal
segment as a phoneme.
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6. Conclusions

Three tasks arising in different communities deal with collecting, manipulating,
and preserving shared information. In each case changing technologies and
requirements drove changes in the architectural form commonly used for the
systems. We can identify that sequence as a common evolutionary pattern for
shared information systems:

"* isolated applications without interaction

"• batch sequential processing

"* repositories for integration via shared data

"* layered hierarchies for dynamic integration across distributed systems

Since problems remain and new technology continues to emerge, this pattern
may grow in the future, for example to add active control by intelligent agents.

These examples show one case in which a common problem structure appears
in several quite different application areas. This suggests that attempts to
exploit "domain knowledge" in software design should characterize domains by
their computational requirements-e.g., shared information systems-as well as
by industry-e.g., data processing, software development, or facility design. In
addition, the examples show that within a single domain, differences among
requirements or operational settings may change the preferred architecture.
Taken together, this suggests that the notion of a single domain-specific
architecture serving a segment of an industry may not fully exploit our growing
architectural capabilities.

The models, notations, and tools for specifying software architectures remain
informal. Although even informal models are useful, research in several areas
is required to make these more precise and robust.

"• Complete a taxonomy of common architectural patterns.

"• Define and implement better abstractions for the interactions among
components; at present system descriptions are cast in terms of
procedure calls no matter what the abstractions may be.

"* Establish ways to encapsulate stand-alone systems and express the
resulting interfaces so they can be used as subsystems; linguistically
this is a closure problem.

"* Continue the exploration of independent agents for integration,
especially in dynamically changing distributed systems.
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A Design Space and Design Rules for
User Interface Software Architecture

Abstract. The architecture of a user interface software system can be described
in terms of a fairly small number of key functional and structural choices. This
report presents a "design space" that identifies these key choices and classifies
the alternatives available for each choice.  The design space is a useful
framework for organizing and applying design knowledge.  The report presents a
set of design rules expressed in the terms of the design space.  These rules can
help a software designer to make good structural choices based on the functional
requirements for a user interface system.  Extension of this work might eventually
provide automated assistance for structural design.

1. Introduction

Software architecture is the study of the large-scale structure and performance of software
systems [Shaw 89].  Important aspects of a system’s architecture include the division of
functions among system modules, the means of communication between modules, and the
representation of shared information.  This report describes the architecture of user interface
systems, using a design space that identifies the key architectural choices and classifies the
available alternatives.  The space provides a framework for design rules that can assist a
designer in choosing an architecture that is appropriate for the functional requirements of a
new system.  The design space is useful in its own right as a shared vocabulary for describ-
ing and understanding systems.

This report is a summary of results from the author’s thesis [Lane 90a].  It concentrates on
presenting those results that are of interest to user interface system builders.  A companion
report argues that design spaces and rules may be a widely applicable means of expressing
software engineering knowledge [Lane 90b].

1.1. Rationale

The established fields of engineering have long distinguished between routine and innova-
tive design methods. Routine design uses standardized methods to solve problems similar
to those that have been solved before.  This process is not expected to yield the best pos-
sible design, but rather to yield a design that meets all the stated requirements with min-
imum design effort.  In contrast, innovative design methods rely less on prior practice than
on raw invention or derivation from abstract principles.  Innovative designs can solve new
types of problems or produce solutions especially well-tuned to specific requirements, but at
a high design cost.  Moreover, innovative design is more likely to fail to produce a solution
than routine design (where a routine method is applicable). Engineering handbooks (e.g.,
[Perry 84]) exist primarily to support routine design.  A good handbook arms its user with a

number of standard design approaches and with knowledge of their strengths and limita-
tions.
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Routine design methods have benefits beyond reducing initial design cost.  A standardized,
commonly known design method reduces the effort needed to understand another person’s
design; hence, maintenance costs are also reduced.  More fundamentally, standardized
methods provide a context for the creation and application of knowledge; this is why a stan-
dardized method is usually better understood and more reliable than an ad hoc one.  For
example, the recognition and use of standard control flow patterns (conditionals, iteration,
and so forth) made it possible for researchers to discover the key properties of those pat-
terns (e.g., invariant and termination conditions of loops).  Programmers now routinely use
this knowledge to produce better-quality code than was possible without it.

At present, routine design is not well practiced by software engineers.  Some designers tend
to invent every system from scratch, while others tend to reuse a familiar design regardless
of its suitability.  Both errors arise from lack of a set of standardized methods.  Handbook-
like texts are now widely available for selection of algorithms and data structures (e.g.,
[Knuth 73, Sedgewick 88]), but such handbooks do not yet exist for higher levels of

software design.  The work reported here is a start toward developing a routine practice of
software system architecture, within the limited domain of user interface systems.

The systems covered by this study are those whose main focus is on providing an inter-
active user interface for some software function(s).  This includes user interface manage-
ment systems (UIMSs), graphics packages, user interface toolkits, window managers, and
even stand-alone applications that have a large user interface component.  This range is
large enough that no single design can cover all cases; hence, we must consider how to
choose among alternatives.  At the same time, the range is not too large to allow recognition
of common patterns.  Future work may make it possible to construct useful design spaces
for larger classes of software systems.

1.2. The Notion of a Design Space

The central concept in this report is that of a multi-dimensional design space that classifies
system architectures. Each dimension of a design space describes variation in one system
characteristic or design choice. Values along a dimension correspond to alternative require-
ments or design choices.  For example, required response time could be a dimension; so
could the means of interprocess synchronization (e.g., messages or semaphores).  A
specific system design corresponds to a point in the design space, identified by the dimen-
sional values that correspond to its characteristics and structure.  Figure 1-1 illustrates a tiny
design space.

A design dimension is not necessarily a continuous scale; in most cases the space con-
siders only a few discrete alternatives.  For example, methods for specifying user interface
behavior include state transition diagrams, context-free grammars, menu trees, and many
others. Each of these techniques has many small variations, so one of the key problems in
constructing a design space is finding the most useful granularity of classification.  Even
when a dimension is in principle continuous, one may choose to aggregate it into a few
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prior work and, for several of the previously investigated dimensions, it offers new classifica-
tions that are more useful for making structural decisions.
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device-specific code and shared user interface code on the other.  These divisions are
called the application interface and device interface respectively. Figure 2-1 illustrates the
structural model.

There is some flexibility in dividing a real system into these three components.  This ap-
parent ambiguity is very useful, for one can analyze different levels of the system by adopt-
ing different labelings.  For example, in the X Window System [Scheifler 86], one may
analyze the window server’s design by regarding everything outside the server as applica-
tion specific, then dividing the server into shared user interface and device-dependent
levels. To analyze an X toolkit package, it is more useful to label the toolkit as the shared
code, while regarding the server as a device-specific black box.

2.2. Functional Design Dimensions

The functional dimensions identify the user interface system requirements that most affect
the system’s structure.  These dimensions are not intended to correspond to the earliest
requirements that one might write for a system, but rather to identify the specifications that
immediately precede the gross structural design phase.  Thus, some design decisions have
already been made in arriving at these choices.

The first example of a functional dimension is command execution time. This dimension
indicates how long the application program may take to process a command, compared with
the reaction time of a human user.  Useful classifications are:

• Short maximum time: All commands can be executed in a short time, say a
few tenths of a second.

• Intermediate maximum, short average: Most commands are executed in a
short time, but some may take a bit longer, up to a couple of seconds.

• Long maximum time: Some or all commands may take a long time to execute
so that the user will have a strong perception of waiting.

As an example of the importance of command execution time, a system in the first category
can probably dispense with handling asynchronous input (i.e., no type-ahead or command
cancellation features).  This is less likely to be appropriate when long-running commands
are present.

The second example functional dimension is external event handling: does the application
program need to respond to external events, that is, events not originating in the user inter-
face? If so, on what time scale?

• No external events: The application is uninfluenced by external events, or
checks for them only as part of executing specific user commands.  For ex-
ample, a mail program might check for new mail, but only when an explicit com-
mand to do so is given.  In this case, no support for external events is needed
in the user interface.

• Process events while waiting for input: The application must handle exter-



CMU/SEI-90-TR-22 7

nal events, but response time requirements are not so stringent that it must in-
terrupt processing of user commands.  It is sufficient for the user interface to
allow response to external events while waiting for input.

• External events preempt user commands: External event servicing has suf-
ficiently high priority that user command execution must be interrupted when an
external event occurs.

Like the previous dimension, external event handling has obvious implications for control
flow within the user interface and application.

The third example of a functional dimension is user interface adaptability across devices.
This dimension measures how much change in user interface behavior may be required
when changing to a different set of I/O devices:

• None: All aspects of behavior are the same across all supported devices.
(This includes the case that only one set of I/O devices is supported.)

• Local behavior changes: Only changes in small details of behavior across
devices; for example, the appearance of menus.

• Global behavior changes: Major changes in surface user interface behavior;
for example, a change between menu-driven and command-language interface
types.

• Application semantics changes: Changes in underlying semantics of com-
mands (e.g., continuous display of state versus display on command).

The final examples are a complementary pair of dimensions. Application portability
across interaction styles specifies the degree of portability across interaction styles re-
quired for applications that will use the user interface software:

• High: Applications should be portable across significantly different styles (e.g.,
command language versus menu-driven).

• Medium: Applications should be independent of minor stylistic variations (e.g.,
menu appearance).

• Low: User interface variability is not a concern, or application changes are ac-
ceptable when modifying the user interface.

User interface system adaptability across interaction styles specifies how adaptable to
different interaction styles the shared user interface software should be:

• High: Adaptable to a wide range of interface styles.

• Medium: Limited adaptability.

• Low: Imposes a specific interface style.

Since interface behavior must be specified somewhere, there is a tradeoff between applica-
tion and shared user interface flexibility: either the shared software imposes a stylistic deci-
sion, or the application makes the decision and hence becomes less portable.  This dilemma
can be alleviated by wise use of default choices, but in general, high requirements for both
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of these dimensions should be viewed with suspicion.  In the other direction, low require-
ments for both dimensions indicate little flexibility in user interface behavior, which is per-
fectly appropriate for some systems (for example, if strong user interface conventions exist).
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2.2.1. The Most Important Functional Dimensions
It is reasonable to expect that some functional dimensions have more influence on structure
than others, but it is difficult to guess which ones have the greatest impact.  Some insight
can be gained from the author’s experiments with automated design rules (see Section 4):
we can rank the functional dimensions according to the total weight given to each in the
automated rule set.  (Those rules did not fully reproduce the decisions of human experts, so
this ranking may need to be modified when better data is available.)  On this basis, the five
functional dimensions with most influence on the structural dimensions are:

• User interface system adaptability across devices

• Application portability across devices

• Application portability across interaction styles

• Basic interface class

• System organization

The next five dimensions are:

• Available processing power

• I/O device class breadth

• User interface system adaptability across interaction styles

• User customizability

• External event handling

The remaining fifteen functional dimensions (listed in Appendix A) have less influence on
structure.

The most striking feature of this ranking is the importance of dimensions having to do with
flexibility. Evidently the nature and degree of adaptability required of the system are by far
the most important determinants of an appropriate structure.  It is an open question whether
this property is unique to user interface system structures, or is true for other kinds of
software as well.
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2.3. Structural Design Dimensions

This section presents some important structural dimensions: the fundamental decisions
about system structure.

Application interface abstraction level is in many ways the key structural dimension.  The
design space identifies six general classes of application interface, which are most easily
distinguished by the level of abstraction in communication:1

• Monolithic program: There is no separation between application-specific and
shared code, hence no application interface (and no device interface, either).
This can be an appropriate solution in small, specialized systems where the ap-
plication needs considerable control over user interface details and/or little
processing power is available.  (Video games are a typical example.)

• Abstract device: The shared code is simply a device driver, presenting an
abstract device for manipulation by the application.  The operations provided
have specific physical interpretations (e.g., "draw line," but not "present menu").
Most aspects of interactive behavior are under the control of the application,
although some local interactions may be handled by the shared code (e.g.,
character echoing and backspace handling in a keyboard/display driver). In this
category, the application interface and device interface are the same.

• Toolkit: The shared code provides a library of interaction techniques (e.g.,
menu or scroll bar handlers).  The application is responsible for selecting ap-
propriate toolkit elements and composing them into a complete interface; hence
the shared code can control only local aspects of user interface style, with
global behavior remaining under application control. The interaction between
application and shared code is in terms of specific interactive techniques (e.g.,
"obtain menu selection"). The application can bypass the toolkit, reaching
down to an underlying abstract device level, if it requires an interaction tech-
nique not provided by the toolkit.  In particular, conversions between special-
ized application data types and their device-oriented representations are done
by the application, accessing the underlying abstract device directly.2

• Interaction manager with fixed data types: The shared code controls both
local and global interaction sequences and stylistic decisions.  Its interaction
with the application is expressed in terms of abstract information transfers, such
as "get command" or "present result" (notice that no particular external
representation is implied).  These abstract transfers use a fixed set of standard
data types (e.g., integers, strings); the application must express its input and
output in terms of the standard data types. Hence some aspects of the conver-
sion between application internal data formats and user-visible representations
remain in the application code.

1Recognition of abstraction level as a key property in user interfaces goes back at least to Hayes et al [Hayes
85]. The classification used here is a practical one, but it is based on the theoretical distinctions made by Hayes.

2The notion that conversion between internal and external representations of data types is a key activity in
user interfaces is due to Shaw [Shaw 86].
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• Interaction manager with extensible data types: As above, but the set of
data types used for abstract communication can be extended. The application
does so by specifying (in some notation) the input and output conversions re-
quired for the new data types.  If properly used, this approach allows knowledge
of the external representation to be separated from the main body of the ap-
plication.

• Extensible interaction manager: Communication between the application
and shared code is again in terms of abstract information transfers.  The inter-
action manager provides extensive opportunities for application-specific cus-
tomization. This is accomplished by supplying code that augments or overrides
selected internal operations of the interaction manager.  (Most existing systems
of this class are coded in an object-oriented language, and the language’s in-
heritance mechanism is used to control customization.)  Usually a significant
body of application-specific code customizes the interaction manager; this code
is much more tightly coupled to the internal details of the interaction manager
than is the case with clients of nonextensible interaction managers.

This classification turns out to be sufficient to predict most aspects of the application inter-
face, including the division of user interface functions, the type and extent of application
knowledge made available to the shared user interface code, and the kinds of data types
used in communication.  For instance, we have already suggested the division of local ver-
sus global control of interactive behavior that is typically found in each category.

Abstract device variability is the key dimension describing the device interface.  We view
the device interface as defining an abstract device for the device-independent code to
manipulate. The design space classifies abstract devices according to the degree of
variability perceived by the device-independent code:

• Ideal device: The provided operations and their results are well specified in
terms of an "ideal" device; the real device is expected to approximate the ideal
behavior fairly closely.  (An example is the PostScript imaging model, which ig-
nores the limited resolution of real printers and displays [Adobe 85].) In this
approach, all questions of device variability are hidden from software above the
device driver level, so application portability is high.  This approach is most use-
ful where the real devices deviate only slightly from the ideal model, or at least
not in ways that require rethinking of user interface behavior.

• Parameterized device: A class of devices is covered, differing in specified
parameters such as screen size, number of colors, number of mouse buttons,
etc. The device-independent code can inquire about the parameter values for
the particular device at hand, and adapt its behavior as necessary.  Operations
and their results are well specified, but depend on parameter values. (An ex-
ample is the X Windows graphics model, which exposes display resolution and
color handling [Scheifler 86].)  The advantage of this approach is that higher
level code has both more knowledge of acceptable tradeoffs and more flexibility
in changing its behavior than is possible for a device driver. The drawback is
that device-independent code may have to perform complex case analysis in
order to handle the full range of supported devices.  If this must be done in
each application, the cost is high and there is a great risk that programmers will
omit support for some devices.  To reduce this temptation, it is best to design a
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parameterized model to have just a few well-defined levels of capability, so as
to reduce the number of cases to be considered.

• Device with variable operations: A well-defined set of device operations ex-
ists, but the device-dependent code has considerable leeway in choosing how
to implement the operations; device-independent code is discouraged from be-
ing closely concerned with the exact external behavior.  Results of operations
are thus not well specified.  (For example, GKS logical input devices [Rosenthal
82] and the Scribe formatting model [Reid 80].)  This approach works best
when the device operations are chosen at a level of abstraction high enough to
give the device driver considerable freedom of choice.  Hence the device-
independent code must be willing to give up much control of user interface
details. This restriction means that direct manipulation (with its heavy depen-
dence on semantically-controlled feedback) is not well supported.

• Ad-hoc device: In many real systems, the abstract device definition has
developed in an ad-hoc fashion, and so it is not tightly specified; behavior
varies from device to device.  Applications therefore must confine themselves to
a rather small set of device semantics if they wish to achieve portability, even
though any particular implementation of the abstract device may provide many
additional features. (Alphanumeric terminals are an excellent example.)  While
aesthetically displeasing, this approach has one redeeming benefit:  applica-
tions that do not care about portability are not hindered from exploiting the full
capabilities of a particular real device.

These categories lend themselves to different situations. For example, abstract devices
with variable operations are useful when much of the system’s "intelligence" is to be put into
the device-specific layer; but they are only appropriate for handling local changes in user
interface behavior across devices.

Notation for user interface definition classifies the techniques used for defining user inter-
face appearance and behavior:

• Implicit in shared user interface code: Information "wired into" shared code.
For example, the visual appearance of a menu might be implicit in the menu
routines supplied by a toolkit.  In systems where strong user interface conven-
tions exist, this is a perfectly acceptable approach.

• Implicit in application code: Information buried in the application and not
readily available to shared user interface code. This is most appropriate where
the application is already tightly involved in the user interface, for example, in
handling semantic feedback in direct manipulation systems.

• External declarative notation: A nonprocedural specification separate from
the body of the application program, for example, a grammar or tabular
specification. External declarative notations are particularly well suited to sup-
porting user customization and to use by nonprogramming user interface ex-
perts. Graphical specification methods are an important special case.

• External procedural notation: A procedural specification separate from the
body of the application program; often cast in a specialized programming lan-
guage. Procedural notations are more flexible than declarative ones, but are
harder to use.  User-accessible procedural mechanisms, such as macro defini-
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tion capability or the programming language of EMACS-like editors [Borenstein
88], provide very powerful customization possibilities for sophisticated users.
However, an external notation by definition has limited access to the state of
the application program, which may restrict its capability.

• Internal declarative notation: A nonprocedural specification within the ap-
plication program.  This differs from an implicit representation in that it is avail-
able for use by the shared user interface code. Parameters supplied to shared
user interface routines often amount to an internal declarative notation.  An ex-
ample is a list of menu entries provided to a toolkit menu routine.

• Internal procedural notation: A procedural specification within the application
program. This differs from an implicit representation in that it is available for
use by the shared user interface code. A typical example is a status-inquiry or
data transformation function that is provided for the user interface code to call.
This is the most commonly used notation for customization of extensible inter-
action managers.  It provides an efficient and flexible notation, but is not acces-
sible to the end user, and so is useless for user customization.  It is particularly
useful for handling application-specific feedback in direct manipulation inter-
faces, since it has both adequate flexibility and efficient access to application
semantics.

Each of these categories offers a different tradeoff between power, runtime cost, ease of
use, and ease of modification.  For example, declarative notations are the easiest to use
(especially for nonprogramming user interface designers) but have the least power, since
they can only represent a predetermined range of possibilities.  Typically, several notational
techniques are used in a system, with different aspects of the user interface controlled by
different techniques.  For example, the position and size of a screen button might be
specified graphically, while its highlighting behavior is specified implicitly by the code of a
toolkit routine.

Application control flow indicates where input processing occurs in the application’s flow
of control:

• Single input point: The system contains an event loop that is the sole point at
which user input is accepted; when an input event is received, it is processed;
then control returns to the event loop to await the next input.  Note that the
event loop may be in either application or shared code.

• Multiple input point: Input is accepted at multiple points in the application’s
flow of control.  (Usually, each such point can handle only a subset of the pos-
sible inputs, leading to modal interface behavior.)

This classification is a variation of the standard distinction between "internal control" (ap-
plication calls user interface) and "external control" (user interface calls application) [Hayes
85, Tanner 83].  The standard terminology is unsatisfactory because the properties usually
associated with external control actually apply to any system using an event loop, regard-
less of the direction of subroutine calls.

Number of control threads indicates how many logical threads of control exist in the ap-
plication and user interface:
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• Single thread of control.

• One user interface thread and one application thread.

• Multiple user interface threads and one application thread.

• One user interface thread and multiple application threads.

• Multiple user interface threads and multiple application threads.

Multiple threads are useful for dealing with external events or logically independent concur-
rent dialogues (e.g., multiple input devices).  The one-plus-one-thread choice is particularly
simple and helpful for decoupling application processing (including external event handling)
from user interface logic.

Control thread mechanism describes the method, if any, used to support multiple logical
threads of control.  Often, full-fledged processes are too difficult to implement or impose too
much overhead, so many partial implementations are used.  This dimension classifies the
possibilities as follows:

• None: Only a single logical control thread is used.

• Standard processes: Independently scheduled entities with interprocess
protection (typically, separate address spaces).  These provide security against
other processes, but interprocess communication is relatively expensive.  For a
user interface system, security may or may not be a concern, while communica-
tion costs are almost always a major concern.  In network environments, stan-
dard processes are usually the only kind that can be executed on different
machines.

• Lightweight processes: Independently scheduled entities within a shared ad-
dress space. These are only suitable for mutually trusting processes due to
lack of security; but often that is not a problem for user interface systems.  The
benefit is substantially reduced cost of communication, especially for use of
shared variables.  Few operating systems provide lightweight processes, and
building one’s own lightweight process mechanism can be difficult.

• Non-preemptive processes: Processes without preemptive scheduling (must
explicitly yield control), usually in a shared address space. These are relatively
simple to implement.  Guaranteeing short response time is difficult and impacts
the entire system: long computations must be broken up explicitly.

• Event handlers: Pseudo-processes which are invoked via a series of sub-
routine calls; each such call must return before another event handler process
can be executed.  Hence control flow is restricted; in particular, waiting for
another process cannot occur inside a subroutine called by an event handler.
Again, response time constraints require system-wide attention.  The main ad-
vantage of this method is that it requires virtually no support mechanism.

• Interrupt service routines: Hardware-level event handling; a series of inter-
rupt service routine executions form a control thread, but one with restricted
control flow and communication abilities.  The control flow restrictions are com-
parable to event handlers; but unlike event handlers, preemptive scheduling is
available.
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Event handlers are easily implemented within a user interface system; non-preemptive
processes are harder but can still be implemented without operating system support.  The
other mechanisms usually must be provided by the operating system.  Some form of
preemptive scheduling is often desirable to reduce timing dependencies between threads.

Basis of communication classifies systems according to whether communication between
modules depends upon shared state, upon events, or both.  An event is a transfer of infor-
mation occurring at a discrete time, for example, via a procedure call or message.  Com-
munication through shared state variables is significantly different, because the recipient al-
ways has access to the current values and need not use information in the same order in
which it is sent.  The design space recognizes four categories:

• Events: There is no shared state; all communication relies on events.

• Pure state: Communication is strictly via shared state; the recipient must
repeatedly inspect the state variables to detect changes.

• State with hints: Communication is via shared state, but the recipient is ac-
tively informed of changes via an event mechanism; hence polling of the state
is not required. However, the recipient could ignore the events and reconstruct
all necessary information from the shared state; so the events are efficiency
hints rather than essential information.

• State plus events: Both shared state and events are used; the events are
crucial because they provide information not available from state monitoring.

State-based mechanisms are popular for dealing with incrementally updated displays.  The
hybrid state/event categories provide possibilities for performance optimization in return for
their extra complexity.  State-based communication requires access to shared storage,
which may be impossible or unreasonably expensive in some system architectures.

It is possible for different bases of communication to be used at the application and device
interfaces, but this is rare.  It is fairly common to have different bases of communication for
input and output; hence the design space provides separate dimensions for input and output
communication basis.
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3. Design Rules for User Interface Systems

This section presents some design rules that relate the functional and structural dimensions
of the design space.  Again, we will consider only a few sample rules to illustrate the flavor
of the approach.  For a more thorough presentation of the rules, see Appendix B.

Both here and in Appendix B, we present the rules in an informal fashion.  In this form, the
rules are directly useful as guidelines or rules of thumb for a human designer. Section 4
describes how the rules can be made more formal and suitable for use in automated design.

• Stronger requirements for user interface adaptability across devices favor
higher levels of application interface abstraction, so as to decouple the applica-
tion from user interface details that may change across devices.  If the require-
ment is for global behavior or application semantics changes, then
parameterized abstract devices are also favored.  Such changes generally have
to be implemented in shared user interface code or application code, rather
than in the device driver; so information about the device at hand cannot be
hidden from the higher levels, as the other classes of abstract device try to do.
However, a requirement for local behavior changes can favor abstract devices
with variable operations, since this method can allow all of the required adap-
tation to be hidden within the device driver.

• High user customizability requirements favor external notations for user inter-
face behavior.  Implicit and internal notations are usually more difficult to ac-
cess and more closely coupled to application logic than are external notations.

• A high requirement for application portability across user interface styles favors
the higher levels of application interface abstraction.  Less obviously, it favors
event-based or pure state-based communication over the hybrid forms (state
with hints or state plus events).  A hybrid communication protocol is normally
tuned to particular communication patterns, which may change when user inter-
face style changes.

• If the maximum command execution time is short, a single thread of control is
practical and is favored as the simplest solution.  With longer commands, mul-
tiple threads are favored to permit user input processing to continue; this is
necessary to support command cancellation, for example.

• If external events must be handled, it is often worthwhile to provide separate
control thread(s) for this purpose.  Separate threads serve to decouple event
handling logic from user interface logic.  When external event handling requires
preemption of user commands, a preemptive control thread mechanism (stan-
dard processes, lightweight processes, or interrupt service routines) is strongly
favored. Without such a mechanism, very severe constraints must be placed
on all user interface and application processing in order to guarantee adequate
response time.

• The most commonly useful control thread mechanisms are standard processes,
lightweight processes, and event handlers; the others are appropriate only in
special cases.  For most user interface work, lightweight processes are very
appropriate if available.  Standard processes should be used when protection
considerations warrant, and in network environments where it may be useful to
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put the processes on separate machines.  If these conditions do not apply,
event handlers are the best choice when their response time limitations are ac-
ceptable; otherwise it is probably best to invest in building a lightweight process
mechanism.

The preceding rules all relate functional to structural dimensions.  Following is an example
of the rules interconnecting structural dimensions.

• The choice of application interface abstraction level influences the choice of
notation for user interface behavior.  In monolithic programs and abstract-
device application interfaces, implicit representation is usually sufficient. In
toolkit systems, implicit and internal declarative notations are found (parameters
to toolkit routines being of the latter class).  Interaction managers of all types
use external and/or internal declarative notations.  Extensible interaction
managers rely heavily on procedural notations, particularly internal procedural
notation, since customization is often done by supplying procedures.

The reader may well have found these rules to be fairly obvious and a bit boring.  This is an
indication of the conceptual power of the design space:  many useful rules are immediate
consequences of the properties of the chosen dimensions.  Though straightforward, these
rules are sufficiently powerful to be a useful aid to design.
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4. Automating the Design Rules

The design rules are presented in this report in an informal fashion suitable for use as
guidelines by human software designers.  It is also possible to express the rules in a more
detailed, rigorous formulation.  In such a form the rules could be used as the basis for an
automatic design aid.  The author has experimented with such automated rules, with
promising results.

The rules were expressed in the form of numerical weights associated with particular com-
binations of values along different dimensions.  For example, the combination of no external
events and single thread of control received a positive weight, indicating that a single thread
of control may be a good choice given that requirement; while the combination of preemp-
tive external events and single thread of control received a negative weight.  Given a set of
functional requirements and a proposed structural design, the weights of the applicable rules
can be combined to give a score for that design.  A straightforward search algorithm was
used to find the highest-scoring design for a given set of requirements.

These automated rules were tested by comparing their recommendations to the actual
design choices of expert human software designers, as expressed in a set of test cases.  A
moderate to substantial degree of agreement was observed.  This preliminary result sug-
gests that this approach has considerable potential for creating practical design aids.  More
immediately, it gives some confidence that the design space described here captures useful
knowledge about user interface software design.

Additional information about this experiment is given in the companion report [Lane 90b].
For full details, see [Lane 90a].
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5. Summary

This design space is directly usable as a notation for describing and comparing user inter-
face system architectures.  It should be useful for both the design and understanding of
systems. The design rules provide a good starting point for the process of user interface
structural design.  As presented, the rules have been simplified too much to be capable of
making subtle tradeoffs, but they can still help a designer to identify the better alternatives
and to reject inappropriate structures.  By reducing the mental effort needed to make the
straightforward choices, these rules should free the designer to concentrate on the hard
choices.

An automated form of the design rules has shown a substantial degree of agreement with
the choices of human designers.  One important implication of this result is that the design
space provides considerable conceptual leverage: the space is "right" in the sense that
using it makes choosing an appropriate design easier.

The design space and rules described here were based on an extensive survey of existing
user interface systems [Lane 90a].  The space was formed by searching for classifications
that brought systems with similar properties together.  The rules were then prepared on the
basis of observed correlations.  This process can be compared to development of biological
taxonomies through natural history: the biologist also surveys and classifies existing forms,
then looks for explanatory theories.

At present there is no theoretical basis on which to argue that this design space is better or
worse than a different set of dimensions that might be constructed to describe the same
systems. The design space can be defended only on the grounds of practical utility: it
seems to capture some useful design ideas and correlations.  Further experience and
research will no doubt improve this space, and someday a more theoretical, rigorous basis
for creating design spaces may emerge.

Future work includes refining the design space and rules to cover lower-level choices, thus
providing more detailed design advice.  A full-scale attempt to automate the rules might
produce a practical design aid.  In the long term, we hope that this work can be generalized
to yield principles of software architecture that hold beyond the domain of user interfaces.
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Appendix A:  The Design Space

This appendix provides a full description of the design space used in the experiment with
automated rules.  This space is probably somewhat different from what one would use in
hand design work.

The design space contains twenty-five functional dimensions.  Three to five alternatives are
recognized in each of these dimensions. There are nineteen structural dimensions, each
offering two to seven alternatives.

A.1. Functional Design Dimensions

We turn first to the functional design dimensions, which identify the requirements for a user
interface system that most affect its structure.  These dimensions fall into three groups:

• External requirements: Includes requirements of the particular applications,
users, and I/O devices to be supported, as well as constraints imposed by the
surrounding computer system.

• Basic interactive behavior: Includes the key decisions about user interface
behavior that fundamentally influence internal structure.

• Practical considerations: Cover development cost considerations; primarily,
the required degree of adaptability of the system.

A.1.1. External Requirements

A.1.1.1. Application Characteristics
The characteristics of the problem domain determine the features needed to provide an ade-
quate user interface for a particular application or set of applications.  A general-purpose
user interface system may support more than one of the alternatives listed for any of these
dimensions.

Primary output capability. What will be the system’s main means of communicating infor-
mation to its user?  We classify the alternatives according to the type of data presented:

• Text: Displayed character strings.

• Geometric graphics: Images describable by geometric elements (lines,
circles, etc).  For example, engineering drawings.

• General images: Images not readily described by geometric elements, such as
scanned photographs or bitmap artwork.

• Voice: Audible speech.

• Audio: Non-speech audible output, such as music or tonal signals.

Primary input capability. What is the system’s main method of receiving information from
its user?
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• Discrete selection: Selection of one of a small set of alternatives; for example,
selection from a menu, or a "yes/no" response.

• Continuous selection: Selection of a point in some continuum; for instance
"pointing" to a point on a display surface, or manipulating a slider or control dial.

• Text: Textual data, usually typed on a keyboard; this is distinguished from dis-
crete selection by a wider set of permissible inputs.  (For instance, if the user is
required to press Y or N to answer "yes" or "no," that is discrete selection via a
keyboard; but entry of prose into a word processor, or names and addresses
into a mailing list database, is textual input.)

• Voice, discrete words: Words are recognized individually, without use of
grammar or context information.

• Voice, connected speech: Full-fledged speech recognition, using semantic
context information to distinguish ambiguous words.

Command execution time. How long may the application program take to process a com-
mand, compared with the reaction time of a human user?

• Short maximum time: All commands can be executed in a short time, say a
few tenths of a second.

• Intermediate maximum, short average: Most commands are executed in a
short time, but some may take a bit longer, up to a couple of seconds.

• Long maximum time: Some or all commands may take a long time to execute
so that the user will have a strong perception of waiting.

External event handling. Does the application program need to respond to external
events, that is, events not originating in the user interface?  If so, on what time scale?

• No external events: The application is uninfluenced by external events, or
checks for them only as part of executing specific user commands.  For ex-
ample, a mail program might check for new mail, but only when an explicit com-
mand to do so is given.  In this case, no support for external events is needed
in the user interface.

• Process events while waiting for input: The application must handle exter-
nal events, but response time requirements are not so stringent that it must in-
terrupt processing of user commands.  It is sufficient for the user interface to
allow response to external events while waiting for input.

• External events preempt user commands: External event servicing has suf-
ficiently high priority that user command execution must be interrupted when an
external event occurs.

Error prevention importance. How important is prevention of user error, relative to other
goals (such as speed of operation)?

• High: Error prevention is critical to the task (e.g., automated banking).
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• Medium: Error prevention is of intermediate importance.

• Low: Error prevention is a minor issue.

A.1.1.2. User Needs
What features are needed for the intended user community?  The dimensions affecting sys-
tem structure are:

User help needs. How much user assistance is provided?

• High: Extensive assistance for novices is provided.

• Medium: Some guidance for novices is provided.

• Low: User interface is oriented towards expert users.

User experience variability. How much variability in experience is catered for?

• High: Different user interfaces are provided for novice and expert users.

• Medium: Minor changes in behavior are available for expert users.

• Low: No adaptation to different experience levels is provided.

User customizability. How much can a user modify the system’s behavior?  (We have in
mind end users, not application developers.)

• High: User can add new commands and redefine commands (e.g., via a
macro language), as well as modify user interface details.

• Medium: User can modify details of the user interface that do not affect
semantics; for instance, change menu entry wording, default window sizes,
colors, etc.

• Low: Little or no user customizability.

A.1.1.3. I/O Devices
What types of I/O devices will be used for communication with the user?  The crucial
aspects for system structure are:

Device class breadth. What range of I/O devices is supported by the user interface
software? (We are interested here in the range of devices that are considered equivalent at
some level of the software; for example, if two different displays are supported, they are
probably equivalent at some level, but a display and a speaker would probably not be con-
sidered equivalent.)

• Single device type: Only a specific hardware type is permitted.

• Semantically equivalent devices: Devices with a fixed set of features are
permitted; for example, 24x80 character terminals with cursor positioning and
underlining capability.  Any additional features possessed by a particular device
are ignored.  The means of invoking the required features may vary between
devices.
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• Generic device definition: A wide range of devices is permitted; for example,
alphanumeric terminals of varying size with optional color and highlighting
capabilities.

User interface adaptability across devices. How much change in user interface behavior
may be required when changing to a different set of I/O devices?

• None: All aspects of behavior are the same across all supported devices.

• Local behavior changes: Only changes in small details of behavior across
devices; for example, the appearance of menus.

• Global behavior changes: Major changes in surface user interface behavior;
for example, a change in basic interface class (see below).

• Application semantics changes: Changes in underlying semantics of com-
mands (e.g., continuous display of state versus display on command).

I/O device bandwidth. What data rate is needed to support the user interface I/O devices?
(For devices with persistent state such as displays, use the burst rate needed for updates.)

• High: Kilobytes per second (e.g., high-resolution bitmap displays).

• Medium: Hundreds of bytes per second (e.g., alphanumeric terminals).

• Low: Tens of bytes per second (e.g., teletypes or small LED displays).

A.1.1.4. Computer System Environment
The surrounding computer system affects a user interface in several ways.  The key issues
are:

Strength of user interface conventions. How strong are the user interface conventions of
the computer system?

• High: Extensive, well-defined standards which are generally followed (e.g., the
Macintosh user interface guidelines [Apple 85]).

• Medium: Conventions exist but are incomplete and/or often violated (e.g., Unix
conventions for command line syntax).

• Low: Little or no recognized common user interface behavior.  (This is the
situation for many stand-alone systems, such as automated store directories.)

Inter-application communication requirements. What kind of inter-application com-
munication is supported by the user interface? ("Back door" communication such as data
file exchange is not counted.)

• None: No communication at the user interface level.

• Data exchange: Via cut-and-paste or standardized I/O formats.

• Program invokes program: One program drives another, issuing commands
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and interpreting responses.  (Examples include Unix shell scripts and various
macro languages.)

Inter-application protection requirements. To what extent does shared user interface
software provide protection boundaries between different applications?

• High: User interface deals with multiple applications and must prevent un-
desirable interactions.

• Medium: User interface deals with multiple applications, but only weak protec-
tion is needed (e.g., applications are expected to cooperate).

• Low: No protection is needed (typically because user interface deals with only
one application at a time).

Computer system organization. What is the overall organization of the computer system?

• Uniprocessing: A single application executes at a time.

• Multiprocessing: Multiple applications execute concurrently.

• Distributed processing: Network environment, with multiple CPUs and non-
negligible communication costs.

Existing mechanisms for multiple threads of control. Does the operating system
provide any mechanism(s) for multiple control threads?

• Standard processes: Independently scheduled entities with interprocess
protection (typically, separate address spaces).

• Lightweight processes: Independently scheduled entities with no interprocess
protection (shared address space).

• Non-preemptive processes: Processes without preemptive scheduling (must
explicitly yield control); usually no interprocess protection.

• Interrupt service routines: Hardware-level event handling (a series of inter-
rupt service routine executions can be viewed as a control thread).

• None: No system support for multiple control threads.

Processing power available for user interface. Is adequate processing power available
for the user interface, or is it necessary to "cut corners" in the system design to achieve
adequate response time?

• High: Plenty of processing power is available.

• Medium: Some care is needed to achieve adequate performance.

• Low: Must minimize resources used by user interface.

Designers usually make a rough judgment about available power at a fairly early stage in
the design process, and this judgment colors many subsequent decisions.  We include this
dimension in the design space to make this judgment explicit.
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A.1.2. Basic Interactive Behavior
This group of dimensions includes the key decisions about user interface behavior that fun-
damentally influence internal structure.  Fortunately these are few; otherwise a single struc-
ture could not support a range of interaction styles.

Basic interface class. This dimension identifies the basic kind of interaction supported by
the user interface system.  (A general-purpose system might support more than one of
these classes.) The design space uses a classification proposed by Shneiderman
[Shneiderman 86]:

• Menu selection: Based on repeated selection from groups of alternatives; at
each step, the alternatives are (or can be) displayed.

• Form filling: Based on entry (usually text entry) of values for a given set of
variables.

• Command language: Based on an artificial, symbolic language; often allows
extension through programming-language-like procedure definitions.

• Natural language: Based on (a subset of) a human language such as English.

• Direct manipulation: Based on direct graphical representation and incremen-
tal manipulation of the program’s data.

It turns out that menu selection and form filling can be supported by similar system struc-
tures, but each of the other classes has unique requirements.

Degree of user control over dialog sequence. How much control does the user have
over the sequence of interactions with the system?

• High: User controls dialog sequence (e.g., "modeless" dialog).

• Medium: User has some control over dialog.

• Low: Machine controls dialog sequence.

A.1.3. Practical Considerations
The remaining functional dimensions specify the required degree of adaptability of the sys-
tem. In most cases a less adaptable system is cheaper to build.  Yet a more adaptable
system may repay its higher cost by supporting a wider class of applications.  Another im-
portant consideration is that a system’s adaptability affects its maintainability, and hence its
lifespan.

It is useful to consider adaptability separately for application code and user interface code.
The distinction disappears in single-purpose user interfaces, but is crucial for user interface
systems that support multiple applications.  We use the term portability for application code
and adaptability for user interface code.  This terminology is intended to connote the idea
that we usually desire application code not to change when moving from one environment to
another, while user interface support systems may well be modified to better adapt them to
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new environments.  (Of course there are exceptions to this general rule.)  Portability implies
that the application is unaware of a change in environment, or at least can handle the
change without being rewritten.

Application portability across I/O devices. What degree of portability across I/O devices
is required for applications that will use the user interface software?

• High: Applications should be portable across devices of radically different
types; for example, display versus speech output.

• Medium: Applications should be portable across devices of the same general
class, but differing in detail; for example, bitmap displays of differing color
capabilities.

• Low: Device independence is not a concern, or application changes are ac-
ceptable to support new devices.

Application portability across interaction styles. What degree of portability across user
interface styles is required for applications that will use the user interface software?

• High: Applications should be portable across significantly different styles (e.g.,
command language versus menu-driven).

• Medium: Applications should be independent of minor stylistic variations (e.g.,
menu appearance).

• Low: User interface variability is not a concern, or application changes are ac-
ceptable when modifying the user interface.

Application portability across operating systems. What degree of portability across un-
derlying computer systems is required for applications that will use the user interface
software? (Primarily we are interested in operating system differences, though hardware
differences may also be of interest.)

• High: Applications should be portable across significantly different machines
and operating systems.

• Medium: Applications should be portable across related operating systems
(e.g., portable to different versions of Unix).

• Low: System independence is not a concern.

User interface system adaptability across applications. How adaptable to different ap-
plications should the user interface software be?

• High: Useful across a wide range of applications.

• Medium: Useful for a group of closely related applications with similar interface
needs.

• Low: Supports only a single application.
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User interface system adaptability across interaction styles. How adaptable to different
interaction styles should the user interface software be?

• High: Adaptable to a wide range of interface styles.

• Medium: Limited adaptability.

• Low: Imposes a specific interface style.

A user interface system may well be built to impose some stylistic decisions on applications;
it is by no means the case that more flexibility is always better.

User interface system adaptability across operating systems. How adaptable to dif-
ferent computer systems should the user interface software be?

• High: Portable across significantly different machines and operating systems.

• Medium: Portable across related operating systems.

• Low: System independence is not a concern.
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A.2. Structural Design Dimensions

We now turn to the structural dimensions, which represent the major decisions determining
the overall structure of a user interface system.  These dimensions fall into three major
groups:

• Division of functions and knowledge between modules: How system func-
tions are divided into modules, the interfaces between modules, and the infor-
mation contained within each module.

• Representation issues: The data representations used within the system.
We must consider both actual data, in the sense of values passing through the
user interface, and meta-data that specifies the appearance and behavior of the
user interface.  Meta-data may exist explicitly in the system (for example, as a
data structure describing the layout of a dialog window), or only implicitly.

• Control flow, communication, and synchronization issues: The dynamic
behavior of the user interface code.

The structural design space presented here is a simplification of the complete design space
discussed in [Lane 90a]. The simplification arises primarily from merging together decisions
that proved to be closely correlated in practice. We will mention some of the omitted dimen-
sions under the headings of the key dimensions with which they are associated.

A.2.1. Division of Functions and Knowledge
Under this heading, we consider how system functions are divided into modules, the inter-
faces between modules, and the information contained within each module.

The divisions of greatest interest are the divisions between application-specific code and
shared user interface code on the one hand, and between device-specific code and shared
user interface code on the other. We refer to these divisions as the application interface and
device interface, respectively.  (See Figure 2-1.)

Application interface abstraction level. The design space identifies six general classes of
application interface.  These classes can be most easily distinguished by their level of
abstraction:

• Monolithic program: There is no separation between application-specific and
shared code, hence no application interface (and no device interface, either).

• Abstract device: The shared code is simply a device driver, presenting an
abstract device for manipulation by the application.  The operations provided
have specific physical interpretations (e.g., "draw line," but not "present menu").
Most aspects of interactive behavior are under the control of the application,
although some local interactions may be handled by the shared code (e.g.,
character echoing and backspace handling in a keyboard/display driver). In this
category, the application interface and device interface are the same.

• Toolkit: The shared code provides a library of interaction techniques (e.g.,
menu or scroll bar handlers).  The application is responsible for selecting ap-
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propriate toolkit elements and composing them into a complete interface; hence
the shared code can control only local aspects of user interface style, with
global behavior remaining under application control. The interaction between
application and shared code is in terms of specific interactive techniques (e.g.,
"obtain menu selection"). The application can bypass the toolkit, reaching
down to an underlying abstract device level, if it requires an interaction tech-
nique not provided by the toolkit.  In particular, conversions between special-
ized application data types and their device-oriented representations are done
by the application, accessing the underlying abstract device directly.

• Interaction manager with fixed data types: The shared code controls both
local and global interaction sequences and stylistic decisions. Its interaction
with the application is expressed in terms of abstract information transfers, such
as "get command" or "present result" (notice that no particular external
representation is implied).  These abstract transfers use a fixed set of standard
data types (e.g., integers, strings); the application must express its input and
output in terms of the standard data types.  Hence some aspects of the conver-
sion between application internal data formats and user-visible representations
remain in the application code.

• Interaction manager with extensible data types: As above, but the set of
data types used for abstract communication can be extended.  The application
does so by specifying (in some notation) the input and output conversions re-
quired for the new data types.  If properly used, this approach allows knowledge
of the external representation to be separated from the main body of the ap-
plication.

• Extensible interaction manager: Communication between the application
and shared code is again in terms of abstract information transfers.  The inter-
action manager provides extensive opportunities for application-specific cus-
tomization. This is accomplished by supplying code that augments or overrides
selected internal operations of the interaction manager.  (Most existing systems
of this class are coded in an object-oriented language, and the language’s in-
heritance mechanism is used to control customization.)  Usually a significant
body of application-specific code customizes the interaction manager; this code
is much more tightly coupled to the internal details of the interaction manager
than is the case with clients of nonextensible interaction managers.

This classification turns out to be sufficient to predict most aspects of the application inter-
face, including the division of user interface functions, the type and extent of application
knowledge made available to the shared user interface code, and the kinds of data types
used in communication.  For instance, we have already suggested the division of local ver-
sus global control of interactive behavior that is typically found in each category.

Variability in device-dependent interface. The interface between device-dependent and
device-independent code can be regarded as defining an abstract device for the device-
independent code to manipulate.  This dimension classifies abstract devices according to
the degree of variability perceived by the device-independent code.

• Ideal device: The provided operations and their results are well specified in
terms of an "ideal" device; the real device is expected to approximate the ideal
behavior fairly closely.
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• Parameterized device: A class of devices is covered, differing in specified
parameters such as screen size, number of colors, number of mouse buttons,
etc. The device-independent code can inquire about the parameter values for
the particular device at hand, and adapt its behavior as necessary.  Operations
and their results are well specified, but depend on parameter values.

• Device with variable operations: A well-defined set of device operations ex-
ists, but the device-dependent code has considerable leeway in choosing how
to implement the operations; device-independent code is discouraged from be-
ing closely concerned with the exact external behavior.  Results of operations
are thus not well specified.

• Ad-hoc device: In many real systems, the abstract device definition has
developed in an ad-hoc fashion, and so it is not tightly specified; behavior
varies from device to device.  Applications therefore must confine themselves to
a rather small set of device semantics if they wish to achieve portability, even
though any particular implementation of the abstract device may provide many
additional features.

The reader may wonder why there is no dimension that classifies abstract devices according
to their basic functionality.  Such a dimension might use categories like "bitmap display,"
"vector display," "alphanumeric display," "keyboard," "two-dimensional locator," etc.  But
there are a large number of such categories, with no obvious pattern.  Moreover, much of
the useful information has already been captured in other dimensions (device bandwidth,
primary input and output capability).  The simplified design space therefore provides no such
dimension.

A.2.2. Representation of Information
Here we consider the representations used for user interface data.  Since we are studying
overall system structure, we are more interested in representations that are shared among
modules than in those that are hidden within a single module.

Notation for user interface definition. This dimension classifies the techniques used for
defining user interface appearance and behavior.

• Implicit in shared user interface code: Information buried within shared
code. For example, the visual appearance of a menu might be implicit in the
menu routines supplied by a toolkit.

• Implicit in application code: Information buried in the application and not
readily available to shared user interface code.

• External declarative notation: A nonprocedural specification separate from
the body of the application program, for example, a grammar or tabular
specification. Graphical specification is an important special case, par-
ticularly useful for specification of visual appearance.

• External procedural notation: A procedural specification separate from the
body of the application program; often cast in a specialized programming lan-
guage.
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• Internal declarative notation: A nonprocedural specification within the ap-
plication program. This differs from an implicit representation in that it is avail-
able for use by the shared user interface code.  Parameters supplied to user
interface library routines often amount to an internal declarative notation. An
example is a list of menu entries provided to a toolkit menu routine.

• Internal procedural notation: A procedural specification within the application
program. This differs from an implicit representation in that it is available for
use by the shared user interface code.  A typical example is a status-inquiry or
data transformation function that is provided for the user interface code to call.

Representation of semantic information. This dimension classifies the techniques used
for defining application-specific semantic (as opposed to external appearance) information
that is needed by the user interface.  An example of such information is a range restriction
on an input value.

• Implicit: Buried in the application, and not readily available to shared user in-
terface code.  For example, a range check carried out as part of command ex-
ecution.

• Declarative: Expressed in a nonprocedural notation; for example, a form-filling
package might allow range limits to be given in a table entry describing a
numeric input field.

• Procedural: A procedural specification within the application program. This
differs from an implicit representation in that it is available for use by the shared
user interface code.  For example, a validity checking subroutine might be
provided for each input value.

The limited range of possibilities allowed by a declarative notation is more of a drawback
here than it is for user interface definition. (Semantic information is inherently more variable
across applications than surface user interface choices; were this not so, shared user inter-
face behavior would be of no interest.)  Procedural representations are therefore commonly
used where shared code must have access to semantic information, while implicit represen-
tations are used where this can be avoided.

A.2.3. Control Flow, Communication, and Synchronization
Here we consider the dynamic behavior of the user interface code.  As with the previous
group of dimensions, we are mainly interested in inter-module communication.

Application control flow. Where does input processing occur in the application’s flow of
control?

• Single input point: The system contains an event loop that is the sole point at
which user input is accepted; when an input event is received, it is processed;
then control returns to the event loop to await the next input.  Note that the
event loop may be in either application or shared code.

• Multiple input point: Input is accepted at multiple points in the application’s
flow of control.  (Usually, each such point can handle only a subset of the pos-
sible inputs, leading to modal interface behavior.)
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This classification is a variation of the standard distinction between "internal control" (ap-
plication calls user interface) and "external control" (user interface calls application) [Hayes
85, Tanner 83].  The standard terminology is unsatisfactory because the properties usually
associated with external control actually apply to any system using an event loop, regard-
less of the direction of subroutine calls.

Treatment of asynchronous input. What happens to user input actions that occur while
the application is busy?

• Ignored: Asynchronous input is ignored.

• Queue before all processing: Input events are queued, but no processing is
done (and hence no feedback occurs) until the application is ready for input.

• Partial processing, simple queue: Some fast processing is done to provide
feedback; then events are queued for the application in a first-in-first-out queue.

• Partial processing, complex queue: As above, but the queue may not be
strictly FIFO; for instance, "abort" commands may be delivered first, or may
flush the queue.

Note that the first two of these alternatives correspond to no fast input processing, while the
second two describe systems which have some type of fast input processing.

Fast input processing. Is user input processed before the application is ready to receive
it? If so, how flexible is this processing?

• No fast processing: Everything is synchronous with the application.

• Fixed behavior: Some processing and feedback is done asynchronously; the
nature of the asynchronous processing is not alterable by the application.  (Ex-
ample: input echoing and editing in older time-sharing systems.)

• Parameterized behavior: Application-specific code can set limited parameters
for the behavior of the asynchronous processing.  For example, in some win-
dow systems, different cursor shapes can be established for different parts of
an application’s window.  Shape changes are then handled automatically by the
cursor tracking code.

• Application-dependent behavior: Application-specific code can be executed
during fast processing.  For example, an application-specific routine might be
used to draw rubber-band feedback images during dragging.

The more flexible alternatives in this dimension carry increasing risk of synchronization
problems. (A simple example is that typed-ahead characters may be echoed twice or not at
all when switching between asynchronous echoing and application-driven echoing.)  Com-
munication costs can also be a problem for the last alternative.

Number of control threads. How many control threads exist in the application and user
interface?

• Single thread of control.



36 CMU/SEI-90-TR-22

• One user interface thread and one application thread.

• Multiple user interface threads and one application thread.

• One user interface thread and multiple application threads.

• Multiple user interface threads and multiple application threads.

Multiple threads are useful for dealing with external events or logically independent concur-
rent dialogues (e.g., multiple input devices).  The one-plus-one-thread choice is particularly
simple and helpful for decoupling application processing (including external event handling)
from user interface logic.

Control thread mechanism. What mechanism, if any, is used to support multiple control
threads?

• None: Only a single logical control thread is used.

• Standard processes: Independently scheduled entities with interprocess
protection (typically, separate address spaces).

• Lightweight processes: Independently scheduled entities within a shared ad-
dress space.

• Non-preemptive processes: Processes without preemptive scheduling (must
explicitly yield control), usually in a shared address space.

• Event handlers: Pseudo-processes which are invoked via a series of sub-
routine calls; each such call must return before another event handler process
can be executed.

• Interrupt service routines: Hardware-level event handling; a series of inter-
rupt service routine executions form a control thread, but one with restricted
control flow and communication abilities. Unlike simple event handlers,
preemptive scheduling is available.

Application communication grain size. How frequently does communication occur be-
tween application and shared user interface code?

• Fine grain: Roughly once per user input event; the application is closely
coupled to user actions, and typically participates in feedback generation.

• Coarse grain: Roughly once per complete command; the application is
decoupled from user actions and feedback generation.

Either of these approaches may be preferable, depending on the desired extent of applica-
tion involvement in user interface details.

Device communication grain size. How frequently does communication occur between
device-independent and device-dependent code?

• Fine grain: Roughly once per physical input event; the device-independent
code is involved in generating short-term feedback displays.
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• Coarse grain: Roughly once per logical interaction; the device-independent
code is not involved in short-term feedback generation.

Basis of communication. Does communication between modules depend on shared state
or on events, or both?  (An event is a transfer of information occuring at a discrete time, for
example, via a procedure call or message.)

• Events: There is no shared state; all communication relies on events.

• Pure state: Communication is strictly via shared state; the recipient must
repeatedly inspect the state variables to detect changes.

• State with hints: Communication is via shared state, but the recipient is ac-
tively informed of changes via an event mechanism; hence polling of the state
is not required. However, the recipient could ignore the events and reconstruct
all necessary information from the shared state; so the events are efficiency
hints rather than essential information.

• State plus events: Both shared state and events are used; the events are
crucial because they provide information not available from state monitoring.

It is possible for different bases of communication to be used at the application and device
interfaces, but this is rare.  It is fairly common to have different bases of communication for
input and output; hence the design space provides separate dimensions for input and output
communication basis.

Event mechanisms. Unless pure-state communication is used, a mechanism must be
provided to pass events between modules.  We classify event mechanisms thus:

• None: No events are used (pure state communication).

• Direct procedure call: Standard procedure-call mechanism.  (We include
"remote procedure call" mechanisms, so long as the recipient code is directly
named.)

• Indirect procedure call: Procedure call in which the recipient code is not com-
pletely specified by the calling code, but is dynamically determined; procedure
pointers and object-oriented method calls are typical examples.

• Asynchronous message: The event is passed from one control thread to
another, with the sender not waiting for receipt.

• Synchronous message: The event is passed from one control thread to
another, with the sender blocked until the receiver accepts the message (and
computes a reply, usually).  This differs from a remote procedure call in that the
receiver is a separate control thread that exists before and after the rendez-
vous.

The procedure call mechanisms are used for communication within a control thread, the
message mechanisms for communication across threads. Indirect procedure calls provide
extra separation at slightly higher cost.  Synchronous message mechanisms are somewhat
cheaper to implement than asynchronous ones (for instance, message buffering can be
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avoided), but they may create synchronization problems by increasing timing dependencies
between control threads.

It is common to have different event mechanisms for input and output, and also to have
different mechanisms at the application and device interfaces.  Hence the design space
provides four event-mechanism dimensions, one each for application input, application out-
put, device input, and device output.

Application separation mechanism. How strongly are the application and shared user
interface code separated?

• Programming convention: No mechanism exists to enforce separation.

• Visibility rules: A programming language mechanism such as separate name
spaces. Protection strength depends on whether the language is secure
against errors (such as dangling pointers).

• Hardware separation: A hardware mechanism, typically separate address
spaces. The shared user interface code is reliably protected against program-
ming errors in the application (and vice versa).

• Network link: In addition to providing hardware separation, the communication
protocol allows for cross-machine communication; data representation dif-
ferences between application and user interface code are supported.  An ex-
ample is the support for varying byte order in the X Window protocol.

These choices provide a tradeoff of security against cost of communication.  The availability
of suitable mechanisms is also a consideration; many small machines do not provide
hardware protection mechanisms.

Device separation mechanism. How strongly are the device-dependent and device-
independent layers separated?

The classification is the same as for the previous dimension.

The data volume and frequency of communication are usually higher here than at the ap-
plication interface, so the cost of communication is a greater concern.  Thus a different
choice is often appropriate.
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Appendix B:  The Design Rules

This appendix presents some simple "rules of thumb" that help a designer of user interface
software to select a system architecture.  These rules are not meant to replace good design
judgment, but rather to codify and speed up the routine parts of system design.  The rules
let the designer make quick decisions about aspects of system structure for which there is a
clearly superior alternative, and they focus attention on the most likely choices in cases
where more subtle judgment is necessary.

We discuss the design dimensions in the order in which a designer might consider them
while creating a design. For each dimension, we present a listing of the considerations that
may favor or disfavor each alternative, and some summary rules-of-thumb for selecting one
alternative. Again we emphasize that these rules must be augmented by the designer’s
judgment: typically, the designer must resolve conflicting suggestions by judging the relative
importance of different functional requirements.

Space limitations prohibit any attempt to provide justifications of these observations and
rules. Supporting arguments can be found in [Lane 90a].

B.1. Basic Division of Functions

The designer’s first order of business should be to define the overall division of a system
into device-specific, shared user interface, and application-specific parts.  We view this as a
problem of specifying two interfaces: the application interface between application-specific
and shared code, and the device interface between device-specific and shared code.

B.1.1. Application Interface

Application interface abstraction level. The design space identifies six general classes of
application interface.  In order of increasing level of abstraction in communications, they are:

• Monolithic program: This is an appropriate solution in small, specialized sys-
tems where the application needs considerable control over UI details and/or
little processing power is available.  (Video games are a typical example.)  This
approach should not be chosen if there are any strong flexibility requirements
(user customizability, I/O device variability, or UI style flexibility). The approach
handles direct manipulation interfaces well, but application development effort
will be high.

• Abstract device: This approach is recommended when application portability
is wanted across a limited set of devices, but most control of the user interface
is to remain in the hands of the application program.  Thus it is not a good
choice when application portability across UI styles is a strong requirement.  It
is best not to attempt to support a very wide range of I/O devices with this ap-
proach; the result will be either excess development effort for applications (too
many cases to handle) or loss of control over UI details (if the driver hides too
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many details).  The characteristics of this approach are heavily influenced by
the handling of abstract device variability, which is discussed in Section B.1.2.

• Toolkit: Toolkits provide a significant savings of application development ef-
fort, and yet retain UI system flexibility since the application remains "in charge"
and can bypass the toolkit when necessary.  By the same token, the application
remains coupled to the user interface. Therefore, this approach is recom-
mended when a moderate degree of flexibility is wanted.  This approach is the
minimum level of abstraction to use when a standardized UI style is to be im-
plemented, because standard components (e.g., menus) can be handled by
toolkit routines rather than reimplemented by each application.

• Interaction manager (IM): An IM is a good choice when application portability
(across devices or styles) is a strong requirement, because it provides a strong
separation between UI behavior and the application program.  A high degree of
user customizability can also be supported.  However, supporting direct
manipulation interfaces is difficult because the application cannot supply
semantic feedback.  An IM is useful for enforcing standardized UI behavior,
since it gives the application program the least control over UI details of any
alternative. An IM is especially appropriate in network environments, because
the IM can be physically separated from the application with low communication
costs.

• Interaction manager with extensible data types: Some IMs provide the
capability to extend the set of data types used for application/IM communica-
tion. This option allows representation conversion to be fully separated from
the main body of the application, but it does not do much to solve the semantic
feedback problem.  Hence it provides only a small increment in flexibility.

• Extensible interaction manager: This is accomplished by supplying code that
augments or overrides selected internal operations of the IM. An extensible IM
can provide as much support as a regular IM for standardized styles of user
interface. But it can be used for a wider class of interfaces---including direct
manipulation---by taking advantage of its customization capability. This ap-
proach provides the most flexibility for meeting user customizability, I/O device
variability, and UI style requirements.  But it requires substantial processing
power, and the level of initial investment (for both UI system development and
application developer training) is higher than for any other alternative.
Moreover, care is needed to realize the potential flexibility benefits; since
application-specific customization code sees a relatively low level of abstrac-
tion, it is easy to destroy the logical separation between application and user
interface system.

The benefit to be gained from building anything more complex than an abstract device sys-
tem depends heavily on the degree of standardization of UI behavior---that is, the strength
of the UI conventions in the system environment.  The more that such conventions limit the
range of UI behavior, the more functionality can be put into a toolkit or IM, and the less need
there is for an application to override standard behavior.  Thus increasing strength of con-
ventions tilts the balance first towards toolkits and extensible IMs, then towards nonexten-
sible IMs.
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A nonextensible IM may be the best choice when application portability and development
cost are paramount, as it provides the most insulation of the application from UI details.  Its
limited range of UI styles is a necessary price; at least with present technology, direct
manipulation systems cannot be built without significant application involvement in the user
interface, which compromises both portability and cost.

B.1.2. Device Interface
The interface between device-independent and device-specific code can be regarded as
defining an abstract device for the device-independent code to manipulate.  The details of
an abstract device vary greatly across I/O media, but some general statements can be
made about the precision with which the abstract device is specified.

Abstract device variability. This dimension classifies abstract devices according to the
degree of variability perceived by the device-independent code.

• Ideal device: In this approach, all questions of device variability are hidden
from software above the device driver level, so application portability is high.
This approach is most useful where the real devices deviate only slightly from
the ideal model, or at least not in ways that require rethinking of UI behavior.
The ideal-device approach is not appropriate if any major changes in UI be-
havior may be needed to cope with differences between devices; therefore it
cannot cover as wide a range of actual devices as the other two approaches.

• Parameterized device: This approach allows a wide range of I/O devices to
be accommodated, and it permits substantial changes in UI behavior across
devices. The advantage is that application-specific code has both more
knowledge of acceptable tradeoffs and more flexibility in changing its behavior
than is possible for a device driver. The drawback is that device-independent
code may have to perform complex case analysis in order to handle the full
range of supported devices.  If this must be done in each application, the cost is
high and there is a great risk that programmers will omit support for some
devices. (To reduce this temptation, it is best to design a parameterized model
to have just a few well-defined levels of capability, so as to reduce the number
of cases to be considered.)  This approach should not be used if it is not neces-
sary to support a wide range of I/O devices, as then its high cost is not repaid.
Less obviously, it should not be used when high application portability across
I/O devices is crucial (unless the application is insulated from the abstract
device by an IM layer); the risk of applications failing to cover the full range of
parameter variation is too great.  A final drawback is that substantial processing
power is likely to be needed to handle extensive runtime case analysis.

• Device with variable operations: This approach works best when the device
operations are chosen at a level of abstraction high enough to give the device
driver considerable freedom of choice.  Hence the device-independent code
must be willing to give up much control of UI details.  This restriction means that
direct manipulation (with its heavy dependence on semantically-controlled feed-
back) is not well supported.  Furthermore, only local changes in interface be-
havior can be handled at the device driver level; changes in basic interface
class or application semantics cannot be supported.  When these restrictions
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are acceptable, this approach can support a very wide range of devices with
little impact on device-independent code. Its costs in processing power are low,
since runtime case analysis need not be performed.

• Ad-hoc device: This approach is hardly ever appropriate for new designs.  It is
found principally in systems that have evolved from simpler beginnings.

In systems where little or no variation in I/O devices is expected, one may as well specify an
ideal device model (tailoring it closely to the real devices); this incurs no runtime cost and
provides a well-defined picture of what is required if more devices need to be supported
later. When a moderate or wide range of I/O devices must be supported, the key question is
what types of UI behavior changes are needed across devices.  Parameterization is essen-
tial if global changes are needed, as the device driver cannot handle such changes alone.
Moderate local changes are well served by the variable-operations method, if its drawbacks
are tolerable; otherwise parameterization is preferred.  An ideal device approach may still be
usable if only small, local changes in behavior are needed.

It is possible to support multiple tradeoffs between handling device adaptation in the device
driver and handling it in the application: simple applications can rely on device-specific UI
decisions made in the driver, while more complex ones can make their own choices.  This
amounts to a combination of the variable-operations and parameterized-device approaches.
Obviously, to make this work well, great care is needed in defining the device operations
and parameters.

Selecting the functions to be provided in an abstract device model is a complex task.  A
poorly chosen model may limit portability and/or cause performance problems due to mis-
matches between its properties and specific real devices.  Unfortunately, good designs
seem very dependent on properties of the particular I/O medium; few general design prin-
ciples have emerged.  We can suggest some rules of thumb based on the chosen degree of
variability. When using an ideal or parameterized-device approach, it is probably best to
minimize the amount of user interface functionality (i.e., representation conversion, se-
quence control, user assistance, and state maintenance) placed in the device driver.  The
variable-operations approach, in contrast, gains its power precisely by moving significant
user interface decisions into the device driver.  The trick here is to choose a coherent set of
decisions that are not tightly coupled to those remaining in higher level software.  (Some of
the problems with GKS input devices are due to failure to maintain this separation
[Rosenthal 81].)

B.2. Representation Issues

After defining the major system components and allocating functionality among them, the
next order of business is selecting data representations to be used within the system.  We
must consider both actual data, in the sense of values passing through the user interface,
and meta-data that specifies the appearance and behavior of the user interface.  Meta-data
may exist explicitly in the system (for example, as a data structure describing the layout of a
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dialog window), or only implicitly.  We further subdivide meta-data according to whether it
bears on "surface" UI details or on deeper questions of application semantics.

B.2.1. User Interface Definition

Notation for user interface definition. Here we consider the means of defining UI ap-
pearance and behavior: the meta-data that describes surface details.  We classify notations
for UI definition as follows:

• Implicit in shared user interface code: This is simple and efficient; it is the
appropriate choice for UI behavior that is fixed by the support software.  In sys-
tems where strong UI conventions exist, quite a lot of the definition can reason-
ably be represented this way. It should be avoided when the user interface
system is to be adaptable across a wide range of UI styles, or when user cus-
tomizability is important.

• Implicit in application code: This is the traditional approach that most UI
researchers have tried to move away from.  But it will never be eliminated en-
tirely since it, too, is simple and efficient.  It is most appropriate where the ap-
plication is already tightly involved in the user interface, for example, in handling
semantic feedback in direct manipulation systems.  It should be avoided when
application portability (across I/O devices or UI styles) or user customizability is
important.

• External declarative notation: Declarative representations in general provide
the least flexibility of interface design, but are the easiest to use.  External
declarative notations are particularly well suited to supporting user customiza-
tion and to use by nonprogramming UI experts.  Use of an external notation
helps keep the main application code portable across UI styles and I/O devices,
but only if the notation is flexible enough to specify all the required variations by
itself. Processing power requirements can be high, unless the notation can be
precompiled in some way. Graphical specification is a special case of exter-
nal declarative notation; graphical methods are particularly appropriate for
specification of visual appearance.

• Internal declarative notation: From the application programmer’s viewpoint
this is nearly as easy to use as external declarative notation, and it requires
much less supporting mechanism; however, it makes user customization much
more difficult.

• External procedural notation: Procedural notations are more flexible than
declarative ones, but are harder to use. User-accessible procedural
mechanisms, such as macro definition capability or the programming language
of EMACS-like editors, provide very powerful customization possibilities for
sophisticated users.  Use of an external notation helps keep the main applica-
tion code portable across UI styles and I/O devices.  Substantial processing
power may be needed, depending on the efficiency of the mechanism that ex-
ecutes the notation.  Also, an external notation by definition has limited access
to the state of the application program, which may restrict its capability.

• Internal procedural notation: This is the most commonly used notation for
customization of extensible interaction managers.  It provides an efficient and
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flexible notation, but is not accessible to the end user, and so is useless for
user customization.  It is particularly useful for handling application-specific
feedback in direct manipulation interfaces, since it has both adequate flexibility
and efficient access to application semantics.  This approach is not favored
when application portability is a strong requirement.

Typically, several kinds of notation are used in a user interface system.  Almost always there
are some instances of both kinds of implicit notation, and one or more of the others is often
used as well.  The crucial question is thus which aspects of UI behavior should be described
in which kinds of notation.  The best indicators of the appropriate class of notation are the
required degrees of flexibility and efficiency.

A good rule of thumb is that declarative notations are appropriate for static information or
restricted choices, such as the layout of a display or the selection of one of several
predefined behaviors.  Procedural notations are a better choice for description of dynamic
behavior, because presently available declarative methods aren’t sufficiently flexible. In ei-
ther case, an external notation should be used when user customization is required; other-
wise an internal notation is simpler and more efficient. Implicit representation should be
used only when efficiency is crucial or the probability of change is low.

B.2.2. Application Semantic Information

Representation of semantic information. This dimension classifies the techniques used
for defining application-specific semantic (as opposed to external appearance) information
that is needed by the user interface. An example of such information is range restrictions on
an input value.  The classes are:

• Implicit.

• Declarative.

• Procedural.

The limited range of possibilities allowed by a declarative notation is more of a drawback
here than it is for user interface definition.  (Semantic information is inherently more variable
across applications than surface user interface choices; were this not so, shared UI behavior
would be of no interest.)  Procedural representations are therefore the best bet where
shared code must have access to semantic information, while implicit representations are
usually used otherwise.  In cases where only a limited number of alternatives are likely to be
needed, declarative representations are recommended for ease of use.

Natural language interfaces have special requirements: a great deal of semantic information
must be explicitly represented for use in disambiguating sentences. Both declarative and
procedural techniques are commonly used.
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B.2.3. Representation of Data Values
It turns out that the application interface class is usually sufficient to predict the kinds of data
types passed between modules, so the design space does not include a separate dimension
for this issue.

The lowest application interface abstraction levels rely on device-related data types, such as
bitmaps or other image representations for displays, or keystroke sequences for keyboards.
Toolkit systems introduce data types for user interface constructs such as menus or scroll
bars. Interaction managers use "internal" data types that might be directly used within ap-
plication computations, such as integer or floating-point values. Simple IMs use a fixed set
of standard internal types, while extensible IMs can be extended to communicate in terms of
application-specific internal data types.

As a rule of thumb, application-related data types should be used in preference to device-
related data types.  For example, integer or Boolean values are preferred to equivalent
character strings or bitmaps.  This rule encourages moving representation conversions into
the user interface code.

B.3. Control Flow and Synchronization

We turn now to questions of control flow: what are the control relationships between the
system components, and how are sequences of events synchronized?

It is convenient to visualize control flow in terms of logical control threads. A control thread
is an entity capable of independently performing computations and waiting for events to oc-
cur. We use this term in place of "process" because we do not want to restrict the notion to
standard operating-system-supplied processes.  (Section B.5.2 lists numerous mechanisms
that can support the logical notion of a control thread, possibly with some restrictions in
thread structure or event response time.)

Application control flow. Our most basic control flow dimension is a variation of the stan-
dard distinction between "internal control" and "external control" [Hayes 85].  We prefer to
define the categories as:

• Single input point.

• Multiple input point.

A single input point is appropriate for creating "modeless" interfaces.  Even with a moded
interface, building the application in single-input-point style can be helpful, since it serves to
decouple the application from details of user interface sequencing.  Hence high require-
ments for application portability or user customizability favor single input point control flow.
The major advantage of multiple input point flow is that application actions need not be
atomic with respect to user interaction.  Generally, multiple input points should be used only
if this is an essential feature.
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A single input point is also desirable when external events are to be handled while waiting
for user input; then there is only one point at which to worry about external events.

Number of control threads. This dimension counts the control threads:

• Single thread: This approach is adequate for simple systems, particularly if
single input point control flow can be used (i.e., "external control" of the applica-
tion is sufficient).  It is usually not appropriate when external event handling is
important, nor when long command execution times occur.

• One UI thread and one application thread: This alternative is very popular
since it decouples user interface control flow from the application.  Two threads
are sufficient to allow user interface operations to execute concurrently with the
application. On the user interface side, this allows user input to be processed
and feedback displays to be updated while commands are being executed.  On
the application side, external events can be handled without impeding user in-
terface response, and the application is made more independent of user inter-
face event sequencing.  The cost of providing a multiple-control-thread
mechanism is the major drawback to using this approach.  An existing control
thread mechanism may be usable, depending on the cost of communication be-
tween threads.

• Multiple UI threads: Multiple UI threads simplify dealing with logically inde-
pendent parallel interactions.  These occur in modeless interfaces and when
multiple input devices are used.  An inexpensive thread mechanism is neces-
sary to make this a reasonable approach.

• Multiple application threads: Multiple application threads may be useful for
dealing with external events.  Some systems use them to control cancellation of
user commands.

If an inexpensive control thread mechanism is available, the two-thread approach should be
used for all but the very simplest user interfaces.  The tradeoff point changes if one must
build one’s own thread mechanism, although a simplified mechanism may be adequate.  If
independent concurrent sequences of events must be dealt with, explicit use of multiple
threads is nearly always the right choice.  Even with a restrictive thread mechanism, this will
be cleaner and more reliable than ad hoc solutions.

If external event handling is required to preempt user command execution, a thread
mechanism that provides preemptive scheduling is very desirable.  Without one, it will be
necessary to poll for external events during command execution; this is feasible, but in-
efficient and error-prone.

Treatment of asynchronous input. The user interface must have a strategy for handling
asynchronous input events (events that occur while the application is computing).  The stan-
dard approaches are:

• Ignore asynchronous input: Often the simplest approach to implement, and it
has some advantages in terms of simplicity of UI behavior.  It is usually not
appropriate if commands may take a long time to execute.
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• Queue before all processing: A satisfactory solution if events do not remain
in the queue for long. Otherwise, the lack of feedback is a serious human fac-
tors shortcoming.  Hence this approach is also inappropriate if commands may
take a long time to execute; but it is usually the best solution for short or inter-
mediate command times.

• Partial processing with queuing: Provides flexibility, but requires multiple
control threads and introduces synchronization concerns.  Hence it should be
avoided unless necessary (i.e., unless there are long commands).

Fast input processing. When partial processing is provided, the variability of behavior of
the fast processing is an important issue.  This may be:

• Fixed behavior: Simple and has no synchronization problems, but is obviously
inflexible. It is sufficient if user interface system adaptability is not a strong re-
quirement.

• Parameterized behavior: Recommended in most cases, because the
parameter semantics can be defined to minimize synchronization problems.  (In
particular, one should be wary of parameters that will be changed "on the fly"
when already-processed input may be pending.)

• Application-dependent behavior: Should be used only if user interface sys-
tem adaptability requirements are so high as to make it mandatory.  Use of
application-supplied fast processing routines reduces application portability and
creates significant synchronization concerns.

The more flexible alternatives in this dimension carry increasing risk of synchronization
problems. (A simple example is that typed-ahead characters may be echoed twice or not at
all when switching between asynchronous echoing and application-driven echoing.)  Com-
munication costs can also be a problem for the last alternative.  In general, one should use
the least flexible method possible.

Application communication grain size. How frequently does communication occur be-
tween application and shared user interface code?

• Coarse grain: This is suitable when the application need not be involved in the
details of UI interactions.

• Fine grain: This is most likely to be required in direct manipulation interfaces.
Communication costs and application portability are sacrificed, so this alter-
native should not be used unless necessary.

Coarse-grained communication should be used if the application has long-running com-
mands or external events to cope with, since then one cannot rely on it to provide feedback
promptly.

It is also possible to distinguish between coarse-grained and fine-grained communication at
the device interface.  In coarse-grained device communication, the device-specific code
handles feedback for entire sequences of input events; while with fine-grained device com-
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munication, feedback is handled at higher levels.  As a rule of thumb, fine-grained device
communication is preferable.  Coarse-grained communication may be acceptable if substan-
tial control of the user interface is to be put in the device driver level; this is associated with
the device interface classification of abstract devices with variable operations.

B.4. Matters of State

The system architecture should explicitly recognize state information, whether hidden within
one module or shared between modules.  Shared state is a useful vehicle for communica-
tion. Shared or not, the existence of persistent state is a key aspect of system semantics
and an important basis for performance optimization.

B.4.1. Representation of Interface State
How to represent the state of the user interface is a very general question.  Our rules of
thumb address only a small part of it, to wit: whether to retain intermediate representations
of output (such as display lists or cached bitmaps).  Intermediate representations take extra
work to maintain, but can provide valuable benefits.  We recommend maintaining an inter-
mediate output representation when (1) the output device can usefully be treated as having
a state (not true for audio output, for instance); (2) recalculating the output device’s state
from scratch (from underlying application state) is expensive; and (3) partial or incremental
updates are common.  Under these conditions the performance gain is worth the extra trou-
ble.

Intermediate output representations are also important for handling reference interpretation
(e.g., deducing that a mouse click represents a menu element selection).  This may justify
maintaining an intermediate representation even when display update savings are not sig-
nificant. A partial representation (e.g., just menu coordinates) may be enough for this pur-
pose.

B.4.2. Communication via Shared State

Basis of communication. Communication between modules may depend on shared state
or on events, or both.  (An event is a transfer of information occuring at a discrete time, for
example via a procedure call or message.  Communication through shared state variables is
significantly different because the recipient need not use information in the same order in
which it is sent.)

• Events.

• Pure state.

• State with hints.

• State plus events.

State-based communication can be recommended for driving devices that exhibit persistent
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state, such as displays.  The use of explicit state is a natural way of formalizing the main-
tenance of intermediate representations of output (see above). However, event-based com-
munication is more appropriate for devices that have no useful characterization of state.

The hybrid communication forms which combine events with shared state allow improved
performance at the price of increased complexity.  As a rule of thumb, pure state systems
are simpler and less efficient than pure event systems, which in turn are simpler and less
efficient than hybrid systems.

The major drawback to state-based communication is that it requires efficient access to
shared storage.  This may not be available in multi-process systems, especially when com-
munication across network links is involved.  Synchronization issues must also be con-
sidered if multiple threads access the shared state.

B.5. Mechanisms

The final group of dimensions concern the mechanisms used to implement communication
and control flow.  The classifications used here are the lowest level of detail that can reason-
ably be described as part of the system architecture.  But these issues are indeed part of
system architecture, because they have strong implications for questions that we have al-
ready discussed.

B.5.1. Communication Mechanisms

Event mechanisms. A pure state-based system has no events and so needs no event
communication mechanism.  The other three classes of communication require a
mechanism to pass events between modules.  For communication within a single control
thread, the alternatives are:

• Direct procedure call.

• Indirect procedure call.

Indirect calls provide useful separation between the communicating modules. If the chosen
programming language has a natural mechanism for representing indirect calls, they are
usually well worth the small runtime cost; but otherwise the difficulty of using indirect calls
may outweigh their value.

For communication between control threads, the alternatives are:

• Asynchronous message.

• Synchronous message.

Asynchronous messages are often superior since they reduce synchronization problems
and can be batched to reduce overhead.  Synchronous messages have simpler semantics
and sometimes can be implemented more easily (e.g., message buffers may not be
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needed). If a message mechanism is already available, one should probably use it by
default; otherwise asynchronous messages seem better suited to most UI purposes.

Separation mechanisms. A separation mechanism isolates software components while
still permitting communication.  We recognize four classes:

• Programming convention: This approach provides very weak protection, but
it is flexible and incurs no runtime cost.  This is a reasonable choice for com-
munication between closely related components, or when the system com-
ponents are automatically generated (and thus less prone to human coding er-
ror).

• Visibility rules: This type of mechanism is quite flexible, since the program-
mer can choose what to export or hide.  The runtime cost is small: at most, a
procedure call is needed to cross a protection boundary.  In many programming
languages the protection is not secure against runtime errors.

• Hardware separation: Security is strong, but the cost of communicating
across the protection boundary is high---often several orders of magnitude
more expensive than a procedure call.  This is an appropriate choice when it is
important to ensure security, for example in a window manager that serves mul-
tiple applications. This approach may also be necessary for communication be-
tween modules coded in different programming languages.  An important
aspect of hardware separation is that most current operating systems associate
these protection boundaries with processes; hence division of the user interface
system into protectable entities must be considered jointly with control flow and
synchronization concerns.

• Network link: The communicating parties can exist on nonidentical machines.
The cost of communication in such a case is inherently high, but is worthwhile
in distributed environments.

Generally, visibility rules are the minimum separation that should be used between applica-
tion and user interface code.  Stronger separation mechanisms should be used only where
there are system considerations that justify their cost. The major considerations that may
justify a stronger mechanism are (1) the need for a shared user interface system to protect
itself against errors in any one application; (2) use of a system-provided process mechanism
that forces hardware separation; or (3) the desire to distribute system components across
machines in a network.

Separation will also exist between the shared user interface code and the device-specific
code. This may or may not use the same class of mechanism as is used at the application
interface. In most cases visibility rules are sufficient; the main exception is to permit dis-
tribution across a network.
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B.5.2. Control Flow Mechanisms

Control thread mechanism. Among the many ways to provide the abstract notion of a
control thread are:

• Standard processes: These provide security against other processes, but in-
terprocess communication is relatively expensive.  For a user interface system,
security may or may not be a concern, while communication costs are almost
always a major concern.  If the operating system already provides processes,
not having to implement one’s own process mechanism is an important advan-
tage. In network environments, standard processes are usually the only kind
that can be executed on different machines.

• Lightweight processes: These are suitable only for mutually trusting
processes due to lack of security; but often that is not a problem for user inter-
face systems.  The benefit is substantially reduced cost of communication,
especially for use of shared variables. Few operating systems provide
lightweight processes, and building one’s own lightweight process mechanism
can be difficult.

• Non-preemptive processes: These are relatively simple to implement since
no preemption mechanism is needed.  Synchronization can be achieved merely
by not yielding the processor, although explicit interlocks are safer. The major
drawback is that response to I/O devices can be slow, and response time is
hard to control.

• Interrupt service routines: These provide a simple preemptive scheduling
mechanism. The control flow and communication patterns of ISR-implemented
processes are very restricted, but they are useful for ensuring fast response to
I/O devices.  ISRs are highly machine-dependent, and may not be available to
unprivileged programs.

• Event handlers: The main advantage of this method is that it requires virtually
no support mechanism.  The key disadvantages are the control flow restric-
tions, which are comparable to ISRs, and the lack of fast response, which is
comparable to non-preemptive processes.

Of these, the most commonly useful alternatives are standard processes, lightweight
processes, and event handlers; the others are appropriate only in special cases.  For most
user interface work, lightweight processes are very appropriate if available.  Standard
processes should be used when protection considerations warrant, and in network environ-
ments where it may be useful to put the processes on separate machines.  If these con-
ditions do not apply, event handlers are the best choice when their response time limitations
are acceptable; otherwise it is probably best to invest in building a lightweight process
mechanism.
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Abstract. Developing a good software architecture for a complex sys-
tem is a critically important step for insuring that the system will satisfy
its principal objectives. Unfortunately, today descriptions of software ar-
chitecture are largely based on informal “box-and-line” drawings that
are often ambiguous, incomplete, inconsistent, and unanalyzable. This
need not be the case. Over the past decade a number of researchers have
developed formal languages and associated analysis tools for software ar-
chitecture. In this paper I describe a number of the representative results
from this body of work.

1 Introduction

The field of software architecture is concerned with the design and modeling of
systems at a level of abstraction that reveals their gross structure and allows
one to reason about key system properties, such as performance, reliability, and
security. Typically architectural modeling is done by describing a system as a set
of interacting components, where low-level implementation details are hidden,
and relevant high-level system level properties (such as expected throughputs,
latencies, and reliabilities) are exposed [29, 32].

Software architecture can be viewed as a level of design and system modeling
that forms a bridge between requirements and code. By providing a high-level
model of system structure it permits one to understand a system in much sim-
pler terms than is afforded by code level structures, such as classes, variables,
methods, and the like. Moreover, if characterized properly an architectural de-
scription should in principle allow one to argue that a system’s design satisfies
key requirements by appealing to abstract reasoning over the structure. Finally,
an architecture forms a blueprint for implementations, indicating what are the
principle loci of computation and data storage, the channels of communication,
and the interfaces through which communication takes place.

To illustrate with a simple example, consider a simple pipelined dataflow
architecture, in which streams of data are processed in linear fashion by a se-
quence of stream transformations, or “filters.” When annotated with properties
such as rates of processing, buffering capabilities of the channels, and expected
input rates, one can typically reason about expected throughput and latency of
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2 David Garlan

the overall system. Additionally, the architectural structure likely mirrors the
implementation structures For example, each filter might be implemented as a
separate process communicating over buffered, asynchronous channels provided
by the operating system.

Software architecture consequently plays a critical role in almost all aspects
of the software development lifecycle.

Requirements specification: Architectural design allows one to determine
what one can build, and what requirements are reasonable. Often an ar-
chitectural sketch is necessary to assess product viability. For example, a
preliminary architectural design might tell one whether subsecond response
time is a feasible requirement on a new client-server system.

System design: Software architecture is a form of high-level system design. It
typically determines the first, and most critical, system decomposition. A
system without a well-conceived architecture is doomed to failure.

Implementation: As noted, an architecture is often the blueprint for low-level
design and implementation. The components in an architectural description
typically represent subsystems in the implementation, where the architec-
tural interfaces correspond to the interfaces provided by an implementation.

Reuse: Most systems exhibit regular structures that represent instances of
reusable idioms. For example signal processing systems are often designed
as stream processing systems. Data-centric information systems are often
designed as 3-tiered client-server systems. More generally, software architec-
tures are a key component of product lines and frameworks. Those systems
exploit architectural (and coding) regularities across a family of systems to
make it possible to design and create new systems at low cost by specializing
a general framework to create a particular product.

Maintenance: Software architectures facilitate maintenance by clarifying the
system design, and enabling maintainers to understand the impact of changes.
Since maintenance can account for well over half of a system’s lifetime costs,
and a substantial portion of maintenance is simply understanding a sys-
tem in order to make a desired change, software architectures can be play a
significant role in maintenance.

Run time adaptation: Increasingly systems are expected to operate continu-
ously. Automated mechanisms for detecting and repairing system faults while
a system is running will likely become essential capabilities in future systems.
Software architecture can play an key role in supporting self adaptation, by
providing a reflective model that can be used as a basis for automated repair.

Unfortunately, the potential uses of software architecture are thwarted by to-
day’s relatively informal approaches to architectural representation, documenta-
tion, and analysis. Architectural designs are, more often than not, simply infor-
mal “box-and-line” diagrams accompanied by prose. While these representations
remain useful to practitioners [31] they suffer from their imprecision. Generally,
it is not possible to use them for analysis, to determine with confidence whether
some property holds of a system, whether a design is complete or consistent,
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whether an implementation conforms to an architectural design, or whether a
proposed change violates an architectural principle.

In an effort to improve this situation many researchers have proposed formal
notations and tools to set architectural design on a more solid engineering foot-
ing. Indeed, over the past decade dozens of architectural description languages
(ADLs), numerous architectural evaluation methods, and many architectural
analysis tools have been proposed by researchers [14, 23].

In the remainder of this paper, we outline some of the ways in which formal
methods and notations can be brought to bear on software architecture. We
begin with a brief introduction to software architecture. Next we consider various
formal approaches to modeling and analyzing architectures. Then we briefly
consider automated support, and conclude by listing some of the more interesting
open research problems.

2 Software Architecture

Before characterizing ways in which we can apply formal modeling and analysis
to software architecture, it is important to be clear about what we mean by the
term. Definitions of software architecture abound. (The Software Engineering
Institute’s Web site catalogs more than 90 definitions [8].) A typical one is the
following:

The structure or structures of the system, which comprise software com-
ponents, the externally visible properties of those components, and the
relationships among them [6].

Unfortunately, as with most definitions of software architecture, this one begs the
questions: What structures? What is a component? What kinds of relationships
are relevant? What is an externally visible property?

In practice there are a number of kinds of structural decompositions of a
system [8, 18]. Each of these has a legitimate place in the design and description
of a complex software system, and each has its associated uses with respect to
modeling and analysis.

One of these is a code decomposition, in which the primary elements are
code modules (classes, packages, etc.). Relationships between these elements
typically determine code usage and functionality relationships (imports, calls,
inherits-from, etc.). Typical analyses include dependency analysis, portability
analysis, reuse analysis.

A second class of decomposition characterizes the run-time structures of a
system. Elements in such descriptions include the principal components of a sys-
tem that exist as a system is running (clients, servers, databases, etc.). Also im-
portant in such descriptions are the communication channels that determine how
the components interact. Relationships between these elements determine which
components can communicate with each other and how they do so. Analyses
of these structures address run-time properties, such as potential for deadlocks
and race conditions, reliability, performance, and security. Whether a particular
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analysis can be performed will usually depend on the kind of system. For exam-
ple, a queueing theoretic analysis might only be valid for a system composed of
components that process streams of requests submitted by clients. Or, a schedu-
lability analysis might only be valid for a system in which each component is
treated as a periodic process.

Other structural representations might emphasize the physical context in
which a system is deployed (processors, networks etc.), or developed (organiza-
tional teams or business units).

In this paper we focus on the second of these classes of structure: run-time de-
compositions emphasizing the principal computational elements and their com-
munication channels. Sometimes this is referred to as the “component and con-
nector” viewtype [8]. Indeed, in what follows, unless otherwise indicated, when
we refer to the software architecture a system, we will mean a component and
connector architectural view of it.

While systems can in principle be described as arbitrary compositions of
components and connectors, in practice there are a number of benefits to con-
straining the design space for architectures by associating an architectural style
with the architecture. An architectural style typically defines a vocabulary of
types for components, connectors, interfaces, and properties together with rules
that govern how elements of those types may be composed.

Requiring a system to conform to a style has many benefits, including support
for analysis, reuse, code generation, and system evolution [11, 34, 7]. Moreover,
the notion of style often maps well to widely-used component integration infras-
tructures (such as EJB, HLA, CORBA), which prescribe the kinds of components
allowed and the kinds of interactions that may take place between them.

3 Formal Approaches to Software Architecture

Since architectural description is a multi-faceted problem, it is helpful to classify
the properties of interest into several broad categories:

Structure: What are the principal components and the connectors that allow
those components to communicate? What kinds of interfaces do components
provide? What are the boundaries of subsystem encapsulation? Do the struc-
tures conform to any constraints on topology? Is the design complete?

Design Constraints: What design decisions should not change over time?
What assumptions are being made that should be preserved in the face
of future modification, or dynamically evolving architectures?

Style: What are the constraints implied by the architectural style? Does a given
system conform to constraints of a given architectural style? What analyses
are appropriate for a particular architectural style. What are the relation-
ships between different architectural styles? Is it possible to combine two
styles to produce a third one?

Behavior: What is the abstract behavior of each of the components? What
are the protocols of communication that are required for two components to
interact? Are the components behaviorally compatible? How does a system
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evolve structurally over time? Can we guarantee that all possible structures
that emerge at run time will satisfy some property?

Refinement: Does a more detailed representation, and in particular a concrete
implementation, respect the structure and properties of an architectural de-
sign?

Let us now consider how formal representations of software architecture can
address many of these questions.

3.1 Formalizing Architectural Structure

Over the past decade there has been considerable research devoted to the prob-
lem of providing more precise ways to characterize the structure of software
architectures, and to derive properties of those structures. Indeed, more than
a dozen Architecture Description Languages (or ADLs) have been proposed.
These notations usually provide both a conceptual framework and a concrete
syntax for modeling software architectures. They also typically provide tools for
parsing, unparsing, displaying, compiling, analyzing, or simulating architectural
descriptions written in their associated language.

Examples of ADLs include Aesop [11], Adage [9], C2 [22], Darwin [20],
Rapide [19], SADL [26], UniCon [30], Meta-H [7], and Wright [4]. While all of
these languages are concerned with architectural design, each provides certain
distinctive capabilities: Adage supports the description of architectural frame-
works for avionics navigation and guidance; Aesop supports the use of archi-
tectural styles; C2 supports the description of user interface systems using an
event-based style; Darwin supports the analysis of distributed message-passing
systems; Meta-H provides guidance for designers of real-time avionics control
software; Rapide allows architectural designs to be simulated, and has tools for
analyzing the results of those simulations; SADL provides a formal basis for
architectural refinement; UniCon has a high-level compiler for architectural de-
signs that support a mixture of heterogeneous component and connector types;
Wright supports the formal specification and analysis of interactions between
architectural components.

Although there is considerable diversity in the capabilities of different ADLs,
all share a similar conceptual basis [23], that determines a common foundation
for architectural description. The main elements are:

– Components represent the primary computational elements and data stores
of a system. Intuitively, they correspond to the boxes in box-and-line de-
scriptions of software architectures. Typical examples of components include
such things as clients, servers, filters, objects, blackboards, and databases. In
most ADLs components may have multiple interfaces, each interface defining
a point of interaction between a component and its environment.

– Connectors represent interactions among components. Computationally
speaking, connectors mediate the communication and coordination activi-
ties among components. That is, they provide the “glue” for architectural
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designs, and intuitively, they correspond to the lines in box-and-line descrip-
tions. Examples include simple forms of interaction, such as pipes, procedure
call, and event broadcast. But connectors may also represent more com-
plex interactions, such as a client-server protocol or a SQL link between a
database and an application. Connectors also have interfaces that define the
roles played by the various participants in the interaction represented by the
connector.

– Systems represent configurations (graphs) of components and connectors.
In modern ADLs a key property of system descriptions is that the overall
topology of a system is defined independently from the components and con-
nectors that make up the system. (This is in contrast to most programming
language module systems where dependencies are wired into components via
import clauses.) Systems may also be hierarchical: components and connec-
tors may represent subsystems that have “internal” architectures.

– Properties represent semantic information about a system and its compo-
nents that goes beyond structure. As noted earlier, different ADLs focus
on different properties, but virtually all provide some way to define one
or more extra-functional properties together with tools for analyzing those
properties. For example, some ADLs allow one to calculate overall system
throughput and latency based on performance estimates of each component
and connector [33].

– Constraints represent claims about an architectural design that should re-
main true even as it evolves over time. Typical constraints include restric-
tions on allowable values of properties, topology, and design vocabulary. For
example, an architecture might constrain its design so that the number of
clients of a particular server is less than some maximum value.

– Styles represent families of related systems. An architectural style typi-
cally defines a vocabulary of design element types and rules for compos-
ing them [32]. Examples include dataflow architectures based on graphs of
pipes and filters, blackboard architectures based on shared data space and
a set of knowledge sources, and layered systems. Some architectural styles
additionally prescribe a framework1 as a set of structural forms that spe-
cific applications can specialize. Examples include the traditional multistage
compiler framework, 3-tiered client-server systems, the OSI protocol stack,
and user interface management systems.

As a very simple illustrative example, consider a simple containing a client
and server component connected by a RPC connector. The server itself might be
represented by a subarchitecture. Properties of the connector might include the
protocol of interaction that it requires. Properties of the server might include the

1 Terminology distinguishing different kinds of families of architectures is far from
standard. Among the terms used are “product-line frameworks,” “component inte-
gration standards,” “kits,” “architectural patterns,” “styles,” “idioms,” and others.
For the purposes of this paper, the distinctions between these kinds of architectural
families is less important than the fact that they all represent a set of architectural
instances.
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average response time for requests. Constraints on the system might stipulate
that no more than five clients can ever be connected to this server and that
servers may not initiate communication with a client. The style of the system
might be a “client-server” style in which the vocabulary of design includes clients,
servers, and RPC connectors.

This conceptual basis of ADLs provides a natural way to model the run-
time architectures of systems. First, ADLs allow one to describe compositions
of components precisely, making explicit the ways in which those components
communicate. Second, they support hierarchical descriptions and encapsulation
of subsystems as components in a larger system. Third, they support the specifi-
cation and analysis of non-functional properties. Fourth, many ADLs provide an
explicit home for describing the detailed semantics of communication infrastruc-
ture (through specification of connector types). Fifth, ADLs allow one to define
constraints on system composition that make clear what kinds of compositions
are allowed. Finally, architectural styles allow one to make precise the differences
between kinds of component integration standards.

To be concrete, we now describe a representative ADL, called Acme [13]
Acme supports the definition of four distinct aspects of architecture. First is
structure—the organization of a system as a set of interacting parts. Second is
properties of interest—information about a system or its parts that allow one to
reason abstractly about overall behavior (both functional and extra-functional).
Third is constraints—guidelines for how the architecture can change over time.
Fourth is types and styles—defining classes and families of architecture.

Structure Architectural structure is defined in Acme using seven core types
of entities: components, connectors, systems, ports, roles, representations, and
rep-maps. Consistent with the vocabulary outlined earlier, Acme components
represent computational elements and data stores of a system. A component
may have multiple interfaces, each of which is termed a port. A port identifies
a point of interaction between the component and its environment, and can
represent an interface as simple as a single procedure signature. Alternatively, a
port can define a more complex interface, such as a collection of procedure calls
that must be invoked in certain specified orders, or an event multicast interface.

Acme connectors represent interactions among components. Connectors also
have interfaces that are defined by a set of roles. Each role of a connector defines
a participant of the interaction represented by the connector. Binary connectors
have two roles such as the caller and callee roles of an RPC connector, the reading
and writing roles of a pipe, or the sender and receiver roles of a message passing
connector. Other kinds of connectors may have more than two roles. For example
an event broadcast connector might have a single event-announcer role and an
arbitrary number of event-receiver roles.

Acme systems are defined as graphs in which the nodes represent components
and the arcs represent connectors. This is done by identifying which component
ports are attached to which connector roles.
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Figure 1 contains an Acme description of the simple architecture described
above. A client component is declared to have a single send-request port, and the
server has a single receive-request port. The connector has two roles designated
caller and callee. The topology of this system is defined by listing a set of
attachments that bind component ports to connector roles. In this case, the
client’s requesting port is bound to the rpc’s caller role, and the servers’s request-
handling port is bound to the rpc’s callee role.

System simple_cs = {

Component client = { Port sendRequest }

Component server = { Port receiveRequest }

Connector rpc = { Roles {caller, callee} }

Attachments : {

client.sendRequest to rpc.caller ;

server.receiveRequest to rpc.callee }

}

Fig. 1. Simple Client-Server System in Acme.

To support hierarchical descriptions of architectures, Acme permits any com-
ponent or connector to be represented by one or more detailed, lower-level de-
scriptions. Each such description is termed a representation.

When a component or connector has an architectural representation there
must be some way to indicate the correspondence between the internal system
representation and the external interface of the component or connector that
is being represented. A rep-map (short for “representation map”) defines this
correspondence. In the simplest case a rep-map provides an association between
internal ports and external ports (or, for connectors, internal roles, and external
roles).2 In other cases the map may be considerably more complex.

Figures 2 illustrates the use of representations in elaborating the simple
client-server example. In this case, the server component is elaborated by a
more detailed architectural representation.

Properties The seven classes of design element outlined above are sufficient
for defining the structure of an architecture as a graph of components and con-
nectors. However, there is more to architectural description than structure. But
what exactly? Looking at the range of ADLs, each typically has its own forms
of auxiliary information that determines such things as the run-time semantics
of the system, protocols of interaction, scheduling constraints, and resource con-
sumption. Clearly, the needs for documenting extra-structural properties of a
system’s architecture depend on the nature of the system, the kinds of analyses
required, the tools at hand, and the level of detail included in the description.
2 Note that rep-maps are not connectors: connectors define paths of interaction, while

rep-maps identify an abstraction relationship between sets of interface points.
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System simpleCS = {

Component client = { ... }

Component server = {

Port receiveRequest;

Representation serverDetails = {

System serverDetailsSys = {

Component connectionManager = {

Ports { externalSocket; securityCheckIntf; dbQueryIntf } }

Component securityManager = {

Ports { securityAuthorization; credentialQuery; } }

Component database = {

Ports { securityManagementIntf; queryIntf; } }

Connector SQLQuery = { Roles { caller; callee } }

Connector clearanceRequest = { Roles { requestor; grantor } }

Connector securityQuery = {

Roles { securityManager; requestor } }

Attachments {

connectionManager.securityCheckIntf to clearanceRequest.requestor;

securityManager.securityAuthorization to clearanceRequest.grantor;

connectionManager.dbQueryIntf to SQLQuery.caller;

database.queryIntf to SQLQuery.callee;

securityManager.credentialQuery to securityQuery.securityManager;

database.securityManagementIntf to securityQuery.requestor; }

}

Bindings { connectionManager.externalSocket to server.receiveRequest }

}

}

Connector rpc = { ... }

Attachments { client.send-request to rpc.caller ;

server.receive-request to rpc.callee }

Fig. 2. Client-Server System with Representation.

To accommodate the open-ended requirements for specification of auxiliary
information, Acme supports annotation of architectural structure with arbitrary
lists of properties. Figure 3 shows the simple client-server system elaborated
with several properties. In the figure, properties document such things as the
client’s expected request rate and the location of its source code. For the rpc
connector, properties document the protocol of interaction described as a Wright
specification [4] (described in Section 3.4).

Properties serve to document details of an architecture relevant to its design
and analysis. However, from Acme’s point of view properties are uninterpreted
values—that is, they have no intrinsic semantics. Properties become useful, how-
ever, when tools use them for analysis, translation, display, and manipulation.
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System simple_cs = {

Component client = {

Port sendRequest;

Properties { requestRate : float = 17.0;

sourceCode : externalFile = "CODE-LIB/client.c" }}

Component server = {

Port receiveRequest;

Properties { idempotent : boolean = true;

maxConcurrentClients : integer = 1;

multithreaded : boolean = false;

sourceCode : externalFile = "CODE-LIB/server.c" }}

Connector rpc = {

Role caller;

Role callee;

Properties { synchronous : boolean = true;

maxRoles : integer = 2;

protocol : WrightSpec = "..." }}

Attachments {

client.send-request to rpc.caller ;

server.receive-request to rpc.callee }

}

Fig. 3. Client-Server System with Properties.

3.2 Formalizing Architectural Design Constraints

One of the key ingredients of an architecture model is a set of design constraints
that determine how an architectural design is permitted to evolve over time.
Acme uses a constraint language based on first order predicate logic. That is,
design constraints are expressed as predicates over architectural specifications.
The constraint language includes the standard set of logical constructs (con-
junction, disjunction, implication, quantification, and others). It also includes a
number of special functions that refer to architecture-specific aspects of a system.
For example, there are predicates to determine if two components are connected,
and if a component has a particular property. Other functions return the set of
components in a given system, the set of ports of a given component, the set of
representations of a connector, and so forth. Figure 4 lists a representative set
of example functions. (For a detailed description see [25].)

Constraints can be associated with any design element of an architectural
model. The scope of the constraint is determined by that association. For exam-
ple, if a constraint is attached to a system then it can refer to any of the design
elements contained within it (components, connectors, and their parts). On the
other hand, a constraint attached to a component can only refer to that compo-
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Connected(comp1, comp2) True if component comp1 is connected to
component comp2 by at least one connector

Reachable(comp1, comp2) True if component comp2 is in the transitive
closure of Connected(comp1, *)

HasProperty(elt, propName) True if element elt has a property called propName

HasType(elt, typeName) True if element elt has type typeName

SystemName.Connectors The set of connectors in system SystemName

ConnectorName.Roles The set of the roles in connector ConnectorName

Fig. 4. Sample Functions for Constraint Expressions.

nent (using the special keyword self , and its parts (that is, its ports, properties,
and representations).

To give a few examples, consider the following constraints that might be
associated with a system:

connected(client, server)

will be true if the components named client and server are connected directly
by a connector.

Forall conn : connector in systemInstance.Connectors @ size(conn.roles)
= 2

will be true of a system in which all of the connectors are binary connectors.

Forall conn : connector in systemInstance.Connectors @
Forall r : role in conn.Roles @

Exists comp : component in systemInstance.Components @
Exists p : port in comp.Ports @ attached(p,r) and (p.protocol

= r.protocol)

will be true when all connectors in the system are attached to a port, and the
attached (port, role) pair share the same protocol. Here the port and role protocol
values are represented as properties of the port and role design elements.

Constraints can also define the range of legal property values, as in

self.throughputRate >= 3095

and indicate relationships between properties, as in

comp.totalLatency =
(comp.readLatency + comp.processingLatency + comp.writeLatency)

Constraints may be attached to design elements in one of two ways: as an
invariant or a heuristic. In the first case, the constraint is taken to be a rule
that cannot be violated. In the second case, the constraint is taken to be a
rule that should be observed, but may be selectively violated. Tools that check
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for consistency will naturally treat these differently. A violation of an invariant
makes the architectural specification invalid, while a violation of a heuristic is
treated as a warning.

Figure 5 illustrates how constraints might be used for a hypothetical Mes-
sagePath connector. In this example an invariant prescribes the range of le-
gal buffer sizes, while a heuristic prescribes a maximum value for the expected
throughput.

System messagePathSystem = {

...

Connector MessagePath = {

Roles {source; sink;}

Property expectedThroughput : float = 512;

Invariant (queueBufferSize >= 512) and (queueBufferSize <= 4096);

Heuristic expectedThroughput <= (queueBufferSize / 2);

}

}

Fig. 5. MessagePath Connector with Invariants and Heuristics.

3.3 Formalizing Architectural Style

An important general capability for the description of architectures is the ability
to define styles—or families—of systems. Styles allow one to define a domain-
specific or application-specific design vocabulary, together with constraints on
how that vocabulary can be used. This in turn supports packaging of domain-
specific design expertise, use of special-purpose analysis and code-generation
tools, simplification of the design process, and the ability to check for confor-
mance to architectural standards.

The basic building block for defining styles in Acme is a type system that
can be used to encapsulate recurring structures and relationships. Using Acme
one can define types of components, connectors, ports, and roles. Each such
type provides a type name and a list of required substructure, properties, and
constraints.

Figure 6 illustrates the definition of a Client component type. The type
definition specifies that any component that is an instance of type Client must
have at least one port called Request and a property called request-rate of type
float. Further, the invariants associated with the type require that all ports of
a Client component have a protocol property whose value is rpc-client, that no
client more than 5 ports, that a component’s request rate is larger greater than
0. Finally, there is a heuristic indicating that the request-rate should be less than
100.
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Component Type Client = {

Port Request = {Property protocol: CSPprotocolT};

Property request-rate: Float;

Invariant Forall p in self.Ports @ p.protocol = rpc-client;

Invariant size(self.Ports) <= 5;

Invariant request-rate >= 0;

Heuristic request-rate < 100;

}

Fig. 6. Component Type “Client.”

An Acme style, or family3 is defined by specifying a set of types and a
set of constraints. The types provide the design vocabulary for the style. The
constraints determine how instances of those types can be used.

Figure 7 illustrates the definition of a “Pipe and Filter” style, together with
a sample system declaration using the style. The style defines two component
types, one connector type, and one property type. The single invariant of this
family prescribes that all connectors must be pipes. The system simplePF is
then defined as an instance of the style. This declaration allows the system to
make use of any of the types in the style, and it must satisfy all of the style’s
invariants.

But what does it mean for an instance to satisfy a type? In Acme, types
are interpreted as predicates, and asserting that an instance satisfies a type is
the same as asserting that it satisfies the predicate denoted by the type. The
predicate associated with a type is constructed by viewing declared structure
as asserting the existence of that structure in each instance. In other words, a
type defines the minimal structure of its instances.4 (Hence, in the example of
Figure 7 it is essential to include the invariant asserting that all connectors have
type pipe.)

The use of a predicate-based type system has several important consequences.
First, design elements (and systems) can have an arbitrary number of types. For
example, the fact that a structural element is declared to be of a particular
type, does not preclude it from satisfying other type specifications. This is an
important property since it permits, for example, a system to be considered a
valid instance of a style, even though it was not explicitly declared as such.

Second, the use of invariants fits smoothly within the type system. Adding a
invariant to a structural type or family simply conjoins that predicate with the
others in the type. This means that the type system becomes quite expressive –
essentially harnessing predicate logic to create useful type distinctions.

3 For historical reasons a “style” in Acme is termed a “family.”
4 The semantics of the Acme type system is similar to – but considerably simpler than

– that of other predicate-based type systems, such as the one used by PVS [28]. For
a formal treatment of the semantics, see [25].
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Family PipeFilterFam = {

Component Type FilterT = {

Ports { stdin; stdout; };

Property throughput : int;

};

Component Type UnixFilterT extends FilterT with {

Port stderr;

Property implementationFile : String;

};

Connector Type PipeT = {

Roles { source; sink; };

Property bufferSize : int;

};

Property Type StringMsgFormatT = Record [ size:int; msg:String; ];

Invariant Forall c in self.Connectors @ HasType(c, PipeT);

}

System simplePF : PipeFilterFam = {

Component smooth : FilterT = new FilterT

Component detectErrors : FilterT;

Component showTracks : UnixFilterT = new UnixFilterT extended with {

Property implementationFile : String = "IMPL_HOME/showTracks.c";

};

// Declare the system’s connectors

Connector firstPipe : PipeT;

Connector secondPipe : PipeT;

// Define the system’s topology

Attachments { smooth.stdout to firstPipe.source;

detectErrors.stdin to firstPipe.sink;

detectErrors.stdout to secondPipe.source;

showTracks.stdin to secondPipe.sink; }

}

Fig. 7. Definition of a Pipe-Filter Family.

Third, the process of type checking becomes one of checking satisfaction of
a set of predicates over declared structures. Hence, types play two useful roles:
(a) they encapsulate common, reusable structures and properties, and (b) they
support a powerful form of checkable redundancy.

The use of predicates does, however, raise the issue that, in general, checking
for satisfaction of predicates is not decidable. Therefore, systems that rely on
predicate-based type systems usually do so with the aid of a theorem prover
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(for example, PVS [28]). In Acme, however, we constrain the expressiveness of
types so that type checking remains decidable by ensuring that quantification
is only over finite sets of elements. (Finiteness comes from the fact that Acme
structures can only declare a finite number of subparts – components, ports,
representations, and others.)

3.4 Formalizing Architectural Behavior

In addition to formal modeling of architectural structure, properties, constraints
and styles, it is also useful to be able to model and analyze architectural be-
havior. By associating behavior with architectures, we are able to express much
richer semantic models, capturing things such as the fact that a pipe provides
buffered, order-preserving data transmission, or that a given component will call
the services of another component in some particular order. This in turn al-
lows us to attach analyze important properties, such as system deadlocks, race
conditions, and interface incompatibilities.

In principle there are many possible ways one might specify behavior of the
elements in an architectural model. Indeed, almost any formalism can be used,
and researchers have experimented with formal techniques ranging from pre-
post conditions [1], process algebras [4, 20], statecharts [5], POSets [19], rewrite
rules [17], and many others.

However, all of these have a similar flavor: (1) they document the individual
elements with behavior characterized in terms of abstract events, states and
transitions, and (2) they then perform various composition checks or simulations
to test for aggregate behavior, mismatches, deadlocks, and other anomalies.

Wright. To illustrate how this can be done, consider the Wright architecture
specification language [4]. Wright adopts an approach based on the process alge-
bra CSP [16]. Specifically it associates a CSP-like process with each component,
each component interface (port), each connector, and each connector interface
(role). The overall behavior is then a set of interacting protocols.

The notation used is a subset of CSP, containing the following elements:

– Processes and Events: A process describes an entity that can engage in
communication events.5 Events may be primitive or they can have associated
data (as in e?x and e!x, representing input and output of data, respectively).
The simplest process, STOP, is one that engages in no events. The event

√
is used represent the “success” event. The set of events that a process, P,
understands is termed the “alphabet of P,” or αP .

– Prefixing: A process that engages in event e and then becomes process P
is denoted e→P .

5 It should be clear that by using the term “process” we do not mean that the im-
plementation of the protocol would actually be carried out by a separate operating
system process. That is to say, processes are logical entities used to specify the
components and connectors of a software architecture.
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– Alternative: (“deterministic choice”) A process that can behave like P or
Q, where the choice is made by the environment, is denoted P Q. ( “Envi-
ronment” refers to the other processes that interact with the process.)

– Decision: (“non-deterministic choice”) A process that can behave like P or
Q, where the choice is made (non-deterministically) by the process itself, is
denoted P�Q.

– Named Processes: Process names can be associated with a (possibly re-
cursive) process expression. Unlike CSP, however, we restrict the syntax so
that only a finite number of process names can be introduced. We do not
permit, for example, names of the form Namei, where i can range over the
positive numbers.

In process expressions → associates to the right and binds tighter than either
or �. So e→f→P g→Q is equivalent to (e→(f→P )) (g→Q).

In addition to this standard notation from CSP we introduce three notational
conventions. First, we use the symbol § to represent a successfully terminating
process. This is the process that engages in the success event,

√
, and then stops.

(In CSP, this process is called SKIP.) Formally, § def=
√→STOP. Second, we

allow the introduction of scoped process names, as follows: let Q = expr1 in R.
Third, as in CSP, we allow events and processes to be labeled. The event e
labeled with l is denoted l.e. The operator “:” allows us to label all of the events
in a process, so that l : P is the same process as P , but with each of its events
labeled. For our purposes we use the variant of this operator that does not label√

. We use the symbol Σ to represent the set of all unlabeled events.
This subset of CSP defines processes that are essentially finite state. It pro-

vides sequencing, alternation, and repetition, together with deterministic and
non-deterministic event transitions.

Connector Description. To see how this is used let us consider first how a
connector is specified. A connector type is specified by a set of roles processes
and a glue process. The roles describe the expected local behavior of each of the
interacting parties. For example, the client-server connector illustrated earlier
would have a client role and a server role. The client role process might describe
the client’s behavior as a sequence of alternating requests for service and receipts
of the results. The server role might describe the server’s behavior as the alter-
nate handling of requests and return of results. The glue specification describes
how the activities of the client and server roles are coordinated. It would say
that the activities must be sequenced in the order: client requests service, server
handles request, server provides result, client gets result.

This is how it would be written using the notation just outlined.

connector Service =
role Client = request!x→ result?y → Client � §
role Server = invoke?x→ return!y → Server §
glue = Client.request?x→ Service.invoke!x

→Service.return?y→Client.result!y→glue
§



Formal Modeling and Analysis of Software Architecture 17

The Server role describes the communication behavior of the server. It is de-
fined as a process that repeatedly accepts an invocation and then returns; or it
can terminate with success instead of being invoked. Because we use the alter-
native operator ( ), the choice of invoke or

√
is determined by the environment

of that role (which, as we will see, consists of the other roles and the glue).
The Client role describes the communication behavior of the user of the ser-

vice. Similar to Server, it is a process that can call the service and then receive
the result repeatedly, or terminate. However, because we use the decision oper-
ator (�) in this case, the choice of whether to call the service or to terminate
is determined by the role process itself. Comparing the two roles, note that the
two choice operators allow us to distinguish formally between situations in which
a given role is obliged to provide some services – the case of Server – and the
situation where it may take advantage of some services if it chooses to do so –
the case of Client.

The glue process coordinates the behavior of the two roles by indicating how
the events of the roles work together. Here glue allows the Client role to decide
whether to call or terminate and then sequences the remaining three events and
their data.

The example above illustrates that the connector description language is
capable of expressing the traditional notion of providing and using a set of ser-
vices – the kind of connection supported by import/export clauses of module
interconnection.

As another illustration, consider two examples of a shared data connector.

connector Shared Data1 =
role User1 = set→User1 � get→User1 � §
role User2 = set→User2 � get→User2 � §
glue = User1.set→glue User2.set→glue

User1.get→glue User2.get→glue §

connector Shared Data2 =
role Initializer =

let A = set→A � get→A � §
in set→A

role User = set→User � get→User � §
glue = let Continue = Initializer.set→Continue

User.set→Continue
Initializer.get→Continue
User.get→Continue §

in Initializer.set→Continue §

The first, Shared Data1, indicates that the data does not require an explicit ini-
tialization value. The second, Shared Data2, indicates that there is a distinguished
role Initializer that must supply the initial value.

To take a more complex example, consider the following specification of a
pipe connector.
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connector Pipe =
role Writer = write→Writer � close→§
role Reader =

let ExitOnly = close→§
in let DoRead = (read→Reader

read-eof→ExitOnly)
in DoRead � ExitOnly

glue = let ReadOnly = Reader.read→ReadOnly
Reader.read-eof
→Reader.close →§
Reader.close→§

in let WriteOnly = Writer.write→WriteOnly
Writer.close→§

in Writer.write→glue
Reader.read→glue
Writer.close→ReadOnly
Reader.close→WriteOnly

It might appear to be a simple matter to define a pipe: both the writer
and the reader decide when and how many times they will write or read, after
which they will each close their side of the pipe. In fact, the writer role is just
that simple. The reader, on the other hand, must take other considerations into
account. There must be a way to inform the reader that there will be no more
data.

Connector Semantics. The intuition behind a connector description is that
the roles are treated as independent processes, constrained only by the glue,
which serves to coordinate and interleave the events. To make this idea precise
we use the CSP parallel composition operator, ‖, for interacting processes. The
process P1‖P2 is one whose behavior is permitted by both P1 and P2. That
is, for the events in the intersection of the processes’ alphabets, both processes
must agree to engage in the event. We can then take the meaning of a connector
description to be the parallel interaction of the glue and the roles, where the
alphabets of the roles and glue are arranged so that the desired coordination
occurs.

Hence, the meaning of a connector description with roles R1, R2, . . ., Rn,
and glue Glue is the process:

Glue ‖ (R1:R1 ‖ R2:R2 ‖ . . . ‖ Rn:Rn)

where Ri is the (distinct) name of role Ri, and

αGlue = R1:Σ ∪ R2:Σ ∪ . . . ∪ Rn:Σ ∪ {√}.

In this definition we arrange for the glue’s alphabet to be the union of all
possible events labeled by the respective role names (e.g. Client, Server), together
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with the
√

event. This allows the glue to interact with each role. In contrast,
(except for

√
) the role alphabets are disjoint and so each role can only interact

with the glue. Because
√

is not relabeled, all of the roles and glue can (and must)
agree on

√
for it to occur. In this way we ensure that successful termination of

a connector becomes the joint responsibility of all the parties involved.

Describing Components. Thus far we have concerned ourselves with the
definition of connector types. To complete the picture we must also describe the
ports of components and how those ports are attached to specific connector roles
in a complete software architecture.

In Wright, component ports are also specified by processes: The port process
defines the expected behavior of the component at that particular point of inter-
action. For example, a component that uses a shared data item only for reading
might be partially specified as follows:

component DataUser =
port DataRead = get→DataRead � §
other ports...

Since the port protocols define the actual behavior of the components when
those ports are associated with the roles, the port protocol takes the place of
the role protocol in the actual system. Thus, an attached connector is defined
by the protocol that results from the replacement of the role processes with
the associated port processes. More formally, the meaning of attaching ports
P1 . . . Pn as roles R1 . . . Rn of a connector with glue Glue is the process:

Glue ‖ (R1:P1 ‖ R2:P2 ‖ . . . ‖ Rn:Pn).

Note that this definition of attachment implies that port protocols need not
be identical to the role protocols that they replace. This is advantageous because
it allows greater opportunities for reuse. For instance, in the above example, the
DataUser component should be able to interact with another component (via a
shared data connector) even though it never needs to set. As another example,
we would expect to be able to attach a File port as the Reader role of a pipe (as
is commonly done in Unix when directing the output of a pipe to a file).

But this raises an important question: when is a port “compatible” with a
role? For example, it would be reasonable to forbid DataRead to be used as the
Initializer role for the Shared Data2 connectors, since it requires an initial set;
clearly DataRead will never provide this event.

Analyzing Architectural Behavior. Once one has a formal definition of
behavior there are a number of analyses that one can perform. The most obvious
one is checking that a connector is well-formed. That is to say, that the Glue
in combination with the roles does not lead to deadlock. Another useful check
is to investigate race conditions. This can be done by checking whether certain
events can ever occur out of order.
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Yet another check is to answer questions like “what ports may be used in
this role?” At first glance it might seem that the answer is obvious: simply check
that the port and role protocols are equivalent. But as illustrated earlier, it is
important to be able to attach a port that is not identical to the role. On the
other hand, we would like to make sure that the port fulfills its obligations to the
interaction. For example, if a role requires an initialization as the first operation
(cf., the shared data example), we would like to guarantee that any port actually
performs it.

Informally, we would like to be able to guarantee that an attached port
process always acts in a way that the corresponding role process is capable
of acting. This can be recast as follows: When in a situation predicted by the
protocol, the port must always continue the protocol in a way that the role could
have.

In CSP this intuitive notion is captured by the concept of refinement. Roughly,
process P2 refines P1 (written P1 � P2) if the behaviors of P1 include those of
P2. Technically, the definition is given in terms of the failures/divergences model
of CSP [16, Chapter 3]. For various technical reasons, however, the actual def-
inition of compatibility is a little more complex to define, although it captures
the same essential idea of refinement. (See [4] for details.)

As another check, one can investigate whether a port can be left unattached.
This can be done by seeing if the port will deadlock when connected to a “do
nothing” connector. Other checks are described in detail in [2].

Analyzing Reconfigurable Architectures Thus far the analysis has assumed
a static architecture: that is, the structure of the architecture does not change
during the execution of a system. While this is often a useful approximation to
systems, clearly in the general case systems do evolve structurally. At the very
least, during initialization the system must be created, and this is not likely to
be an atomic operation.

As another example, consider a simple client-server system, such as the one
illustrated earlier, but that allows for the possibility that a server may crash. In
such cases the system might reconfigure itself so that the client uses a backup
server. This can be done by adding a new connector during run time. One of the
things we would like to guarantee for such a system is that no client requests
are lost. This requires some constraints on when reconfiguration can happen.

Some work has been done to address these issues, although comparatively
that work is relatively sparse. In our own work we showed how to extend Wright
to handle dynamically changing topologies [3]. Others have looked at ways to
use the Pi Calculus to specify such things [20]. Others have looked at graph
grammars [24] and category-theoretic approaches [35]. Unfortunately, in all of
these cases the complexity of the specification becomes drastically higher, and
the models become much less tractable for static analysis.
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4 Automated Support

For all of the formal approaches outlined earlier, researchers have developed
numerous tools to aid in the modeling and analysis process for architects. Broadly
speaking there are three general categories of tools:

1. Design Assistants: These tools tend to focus on providing a graphical front
end to allow architects to develop designs. Typically they provide a pallet
of component and connector types that can be instantiated to create system
descriptions. Typical examples are environments such as C2 [22], MetaH [7],
Aesop [11], and Darwin [20].

2. Design Checkers: While automated support for architectural creation and
browsing is valuable, to be effective one must also provide analysis capabili-
ties. Hence, a number of tools have been created to perform various checks.
For example AcmeStudio [25] checks for violations of design constraints.
Wright provides a tool for performing the checks outlined earlier. Those
checks are based on the use of the FDR [10] model checker for CSP. Kramer
and Magee demonstrate how to use their LTSA tool to check specifications
written in their process algebra, FSP [21].

3. Code Generators: In many cases a formal definition of an architecture can
be used to generate system code. For example, the UniCon system handles
the generation of connector code for a wide variety of connector types [30].
Similarly C2 can generate partial implementations in using various infras-
tructures to handle component interaction.

5 Conclusion and Future Prospects

As we have tried to illustrate, software architecture is a field in which formal
modeling and analysis can have a major impact. While the state of practice
continues to rely on informal and semi-formal descriptions, considerable research
has been done to develop good formal models and associated tools for analyzing
them.

But the story is far from complete and there a number of areas in which
further research is needed. Here are a few.

– Scalability: Although some large case studies have been carried out (e.g.,
[5]), there are relatively few demonstrated success stories for large, complex
industrial systems. When systems have thousands of components, it is not
clear how well the representation techniques (particularly graphical ones)
scale. Nor is it clear whether analyses remain tractable. For example, many
analysis tools are based on model checkers, which have significant limitation
on the size of the model that can be checked.

– Dynamism: As noted earlier a key issue is modeling systems whose structure
changes at run time.

– Code conformance: One of the big problems is guaranteeing that an imple-
mentation conforms to its architectural specification. In situations where a
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code generator is used it is often possible to guarantee conformance by con-
struction. But more generally, given an architecture and body of code, there
has been very little work on finding ways to make sure they are consistent.
The main problem is that architectures (as we have discussed them) repre-
sent run-time models, whereas code is obviously a design-time artifact. In
general it is undecidable whether a given body of code will generate a given
architecture.

There are also some intriguing new directions being explored in the area
of self-adaptive systems. Increasingly systems are required to run continuously.
Moreover they must often do this in the context of environments whose resources
are constantly changing (e.g., wireless bandwidth), or whose components may
be changing dynamically (e.g., web services). One approach that is being in-
vestigated by a number of researchers is the incorporation of self-adaptation or
self-healing into a system. The interesting question is how should one do this?

One approach is to use architectural models as the basis for system moni-
toring and repair [12, 15, 27]. The idea is that the architectural model becomes
available at run-time in order to understand whether a system is performing
optimally, and if not it can be used model to reason about reasonable repair
strategies at a high level of abstraction. While work is just beginning in this
area, it appears to be a promising avenue for future research.
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1. Components and connectors
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Motivation for software architecture

We use already architectural idioms for describing the structure of

complex software systems:

� “Camelot is based on the client-server model and uses remote

procedure calls both locally and remotely to provide

communication among applications and servers.” [Spector87]

� “The easiest way to make the canonical sequential compiler into

a concurrent compiler is to pipeline the execution of the compiler

phases over a number of processors.” [Seshadri88]

� “The ARC network follows the general network architecture

specified by the ISO in the Open Systems Interconnection

Reference Model.” [Paulk85]

Reference: David Garlan, Architectures for Software Systems, CMU, Spring 1998.

http://www.cs.cmu.edu/afs/cs/project/tinker-arch/www/html/index.html
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Architectural description has a natural position
in system design and implementation

A slide from one of David Garlan’s lectures:

Reference: David Garlan, Architectures for Software Systems, CMU, Spring 1998.

http://www.cs.cmu.edu/afs/cs/project/tinker-arch/www/html/index.html
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Hardware architecture

There are standardized descriptions of computer hardware
architectures:

� RISC (reduced instruction set computer)

� pipelined architectures

� multi-processor architectures

These descriptions are well understood and successful because

(i) there are a relatively small number of design components

(ii) large-scale design is achieved by replication of design elements

In contrast, software systems use a huge number of design components and scale

upwards, not by replication of existing structure, but by adding more distinct design

components.

Reference: D. E. Perry and A. L. Wolf. Foundations for the Study of Software

Architectures. ACM SIGSOFT Software Engineering Notes, October 1992.
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Network architecture

Again, there are standardized descriptions:

� star networks

� ring networks

� manhattan street (grid) networks

The architectures are described in terms of nodes and connections.

There are only a few standard topologies.

In contrast, software systems use a wide variety of topologies.
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Classical architecture

The architecture of a building is described by

� multiple views: exterior, floor plans, plumbing/wiring, ...

� architectural styles: romanesque, gothic, ...

� style and engineering: how the choice of style influences the

physical design of the building

� style and materials: how the choice of style influences the

materials used to construct (implement) the building.

These concepts also appear in software systems: there are

(i) views: control-flow, data-flow, modular structure, behavioral requirements, ...

(ii) styles: pipe-and-filter, object-oriented, procedural, ...

(iii) engineering: modules, filters, messages, events, ...

(iv) materials: control structures, data structures, ...
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A crucial motivating concept: connectors

The emergence of networks, client-server systems, and OO-based

GUI applications led to the conclusion that

components can be connected in various ways

Mary Shaw stressed this point:

M: Central

Reference: Mary Shaw, Procedure Calls are the Assembly Language of Software

Interconnections: Connectors Deserve First-Class Status. Workshop on Studies of

Software Design, 1993.
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Shaw’s observations

Connectors are forgotten because (it appears that) there are no

codes for them.

But this is because the connectors must be coded in the same

language as the components, which confuses the two forms.

Different forms of low-level connection (synchronous, asynchronous,

peer-to-peer, event broadcast) are fundamentally different yet are all

represented as procedure (system) calls in programming language.

Connectors can (and should?) be coded in languages different from

the languages in which components are coded (e.g., unix pipes).

(-: / 10



Shaw’s philosophy

Components — compilation units (module, data structure, filter)
— are specified by interfaces .

Connectors — “hookers-up” (RPC (Remote Procedure Call) , event,
pipe) — mediate communications between components and are
specified by protocols .
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Example:

M: Central

Interface Central is different from a Java-interface; it lists the “players”
— inA, outB, linkC, Gorp, Thud, ... (connection points/ ports/
method invocations) — that use connectors.
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The connector’s protocol lists
(i) the types of component interfaces it can “mediate”;
(ii) orderings and invariants of component interactions;
(iii) performance guarantees.

Example: Shaw’s description of a unix pipe:

Reference: M. Shaw, R. DeLine, and G. Zelesnik. Abstractions and Implementations

for Architectural Connections. In 3d. Int. Conf. on Configurable Distributed Systems,

Annapolis, Maryland, May 1996.
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Connectors can act as

� communicators: transfer data between components (e.g.,

message passing, buffering)

� mediators: manage shared resource access between

components (e.g., reader/writer policies, monitors, critical regions)

� coordinators: define control flow between components (e.g.,

synchronization (protocols) between clients and servers, event

broadcast and delivery)

� adaptors: connect mismatched components (e.g., a pipe

connects to a file rather than to a filter)

Perhaps you have written code for a bounded buffer or a monitor or a

protocol or a shared, global variable — you have written a connector!
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Connectors can facilitate

� reuse: components from one application are inserted into

another, and they need not know about context in which they are

connected

� evolution: components can be dynamically added and removed

from connectors

� heterogenity: components that use different forms of

communication can be connected together in the same system

A connector should have the ability to handle limited mismatches

between connected components, via information reformatting,

object-wrappers, and object-adaptors, such that the component is not

rewritten — the connector does the reformatting, wrapping, adapting.

(-: / 15



If connectors are crucial to systems building, why did we take so long

to “discover” them? One answer is that components are

“pre-packaged” to use certain connectors:

But “smart” connectors make components simpler, because the

coding for interaction rests in the connectors — not the components.

The philosophy, system = components + connectors was a strong

motivation for a theory of software architecture.

Reference: M. Shaw and D. Garlan. Formulations and Formalisms in Software

Architecture. Computer Science Today: Recent Trends and Developments Jan van

Leeuwen, ed., Springer-Verlag LNCS, 1996, pp. 307-323.
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2. Software Architecture
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What is a software architecture? (Perry and Wolf)

A software architecture consists of

1. elements: processing elements (“functions”), connectors (“glue” —

procedure calls, messages, events, shared storage cells), data elements
(what “flows” between the processing elements)

2. form: properties (constraints on elements and system) and relationship
(configuration, topology)

3. rationale: philosophy and pragmatics of the system:
requirements, economics, reliability, performance

There can be “views” of the architecture from the perspective of the
process elements, the data, or the connectors. The views might show

static and dynamic structure.

Reference: D. E. Perry and A. L. Wolf. Foundations for the Study of Software

Architectures. ACM SIGSOFT Software Engineering Notes, October 1992.
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Architectural Styles (patterns)

1. Data-flow systems: batch sequential, pipes and filters

2. Call-and-return systems: main program and subroutines, hierarchical

layers, object-oriented systems

3. Virtual machines: interpreters, rule-based systems

4. Independent components: communicating systems, event systems,

distributed systems

5. Repositories (data-centered systems): databases, blackboards

6. and there are many others, including hybrid architectures

The italicized terms are the styles (e.g., independent components); the roman terms

are architectures (e.g., communicating system). There are specific instances of the

architectures (e.g., a client-server architecture is a distributed system). But these

notions are not firm!
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Data-flow systems: Batch-sequential and Pipe-and-filter

ParseScan GenCode
tokens tree codetext

Batch sequential Pipe and filter

Components: whole program filter (function)

Connectors: conventional input-output pipe (data flow)

Constraints:

components execute to

completion, consuming

entire input, producing

entire output

data arrives in incre-

ments to filters

Examples: Unix shells, signal processing, multi-pass compilers

Advantages: easy to unplug and replace filters; interactions between components

easy to analyze. Disadvantages: interactivity with end-user severely limited; performs

as quickly as slowest component.
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Call-and-return systems: subroutine and layered

main

sub1 sub2 sub3

... ... ...

paramsparams
params

Kernel

basic utilities

user interface
args

args

args

Subroutine Layered

Components: subroutines (“servers”) functions (“servers”)

Connectors: parameter passing protocols

Constraints: hierarchical execution

and encapsulation

functions within a layer

invoke (API of) others

at next lower layer

Examples: modular, object-oriented, N-tier systems (subroutine);
communication protocols, operating systems (layered)
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main

sub1 sub2 sub3

... ... ...

paramsparams
params

Kernel

basic utilities

user interface
args

args

args

Advantages: hierarchical decomposition of solution; limits range of

interactions between components, simplifying correctness reasoning;

each layer defines a virtual machine; supports portability (by replacing

lowest-level components).

Disadvantages: components must know the identities of other

components to connect to them; side effects complicate correctness

reasoning (e.g., A uses C, B uses and changes C, the result is an

unexpected side effect from A’s perspective; components sensitive to

performance at lower levels/layers.
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Virtual machine: interpreter

program

interpreted

program’s

state

Interpretation

engine

interpreter’s

state

fetch

ins. &
data

outputs

inputs to program

Interpreter

Components: “memories” and state-machine engine

Connectors: fetch and store operations

Constraints: engine’s “execution cycle” controls the

simulation of program’s execution

Examples: high-level programming-language interpreters, byte-code
machines, virtual machines

Advantages: rapid prototyping Disadvantages: inefficient.
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Repositories: databases and blackboards

interface + logic engine

databaseprocess1

process2 processn

transaction

transaction transaction

. . .

. . .

Database Blackboard

Components: processes and database knowledge sources and

blackboard
Connectors: queries and updates notifications and updates

Constraints: transactions (queries and

updates) drive computation

knowledge sources respond

when enabled by the state of the
blackboard. Problem is solved

by cooperative computation on
blackboard.

Examples: speech and pattern recognition (blackboard); syntax
editors and compilers (parse tree and symbol table are repositories)
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interface + logic engine

databaseprocess1

process2 processn

transaction

transaction transaction

. . .

. . .

Advantages: easy to add new processes.

Disadvantages: alterations to repository affect all components.
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Independent components: communicating processes

process

process

process

α
β γ

δ

Communicating processes

Components: processes (“tasks”)

Connectors: ports or buffers or RPC

Constraints: processes execute in parallel and send mes-

sages (synchronously or asynchronously)

Example: client-server and peer-to-peer architectures

Advantages: easy to add and remove processes. Disadvantages: difficult to reason

about control flow.
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Independent components: event systems

object

object

object

event registry

!

?

!

!

?

Event systems

Components: objects or processes (“threads”)

Connectors: event broadcast and notification (implicit invocation)

Constraints:
components “register” to receive event notifi-

cation; components signal events, environment

notifies registered “listeners”

Examples: GUI-based systems, debuggers, syntax-directed editors,
database consistency checkers
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object

object

object

event registry

!

?

!

!

?

Advantages: easy for new listeners to register and unregister

dynamically; component reuse.

Disadvantages: difficult to reason about control flow and to formulate

system-wide invariants of correct behavior.
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Three architectures for a compiler (Garlan and Shaw)

The symbol table and tree are

“shared-data connectors”

The blackboard triggers

incremental checking and code

generation
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What do we gain from using a software
architecture?

1. the architecture helps us communicate the system’s design
to the project’s stakeholders (users, managers,
implementors)

2. it helps us analyze design decisions

3. it helps us reuse concepts and components in future
systems
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4. Architecture Description
Languages
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A language for connectors: UniCon

Shaw developed a language, UniCon (Universal Connector

Language), for describing connectors and components.

Components are specified by interfaces , which include
(i) type;

(ii) attributes with values that specialize the type;

(iii) players, which are the component’s connection points. Each

player is itself typed.

Connectors are specified by protocols ; they have
(i) type;

(ii) specific properties that specialize the type;

(iii) roles that the connector uses to mediate (make) communication

between components.
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Graphical depiction of an assembly of three components and four
connectors:

A development tool helps the designer draw the configuration and
map it to coding.

Reference: M. Shaw, R. DeLine, and G. Zelesnik, Abstractions and Implementations

for Architectural Connections. In 3d Int. Conf. Configurable Distributed Systems,

Annapolis, Maryland, May 1996.
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uses statements in-

stantiate the parts

composed

connect statements

state how players sat-

isfy roles

bind statements map

the external interface to

the internal configura-

tion
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Connectors described in UniCon:

� data-flow connectors (pipe)

� procedural connectors (procedure call, remote procedure call):

pass control

� data-sharing connectors (data access): export and import data

� resource-contention connectors (RT scheduler): competition for

resources

� aggregate connectors (PL bundler): compound connections
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Wright : Unicon + CSP

Garlan and Allen developed Wright to specify protocols. Here is a

single-client/single-server example:

The protocols are specified with Hoare’s CSP (Communicating

Sequential Processes) algebra.
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The glue protocol synchronizes the Client and Server roles:

Client || Server || glue

⇒ result?y → Client || Server || Server.invoke!x → ...

⇒ result?y → Client || return!y → Server ||

Server.return?y → ...

⇒ ... ⇒ Client || Server || glue
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Forms of CSP processes:

� prefixing: e → P

plusOne?x → return!x + 1 → · · · || plusOne!2 → return?y → · · ·

⇒ return!2 + 1 → · · · || return?y → · · ·

� external choice: P[]Q

plusOne?x → · · · [] plusTwo?x → · · · x + 2 · · · || plusTwo!5 → · · ·

⇒ · · · 5 + 2 · · · || · · ·

� internal choice: P ⊓ Q

plusOne?x → · · · || plusOne!5 → · · · ⊓ plusTwo!5 → · · ·

⇒ plusOne?x → · · · || plusTwo!5 → · · ·

� parallel composition: P||Q

� halt: §

� (tail) recursion: p = · · · p (More formally, µz.P, where z may occur
free in P.)
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A pipe protocol in Wright

Reference: R. Allen and D. Garlan. A formal basis for architectural connection. ACM

TOSEM 1997.
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C2: an N-tier framework and language

Developed at Univ. of California, Irvine, Institute of Software
Research: http://www.isr.uci.edu/architecture/c2.html

Diagrams are from Medvidovic’s course,

http://sunset.usc.edu/classes/cs578 2002
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Example architecture in C2: video game
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Here is a C2SADEL description of the video game’s “Well”
component:

Reference: N. Medvidovic, et al. A Language and Environment for

Architecture-Based Software Development and Evolution. 21st Int. Conf. on

Software Engineering, Los Angeles, May 1999.
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And here is a description of a connector and part of the configuration:
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ArchJava: Java extended with Unicon features

� Each component (class) has its own interfaces (ports) that list

which methods it requires and provides

� Connectors are coded as classes, too, and extend the basic

classes, Connector, Port, Method, etc.

� The ArchJava run-time platform includes a run-time type checker

that enforces correctness of run-time connections (e.g., RPC,

TCP)

� There is an open-source implementation and Eclipse plug-in

� www.archjava.org
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POS

UserInterface Sales Inventory
view

model client

TCPconnector

server
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POS

UserInterface Sales Inventory
view

model client

TCPconnector

server
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POS

UserInterface Sales Inventory
view

model client

TCPconnector

server

From K. M. Hansen, www.daimi.dk/∼marius/teaching/ATiSA2005
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POS

UserInterface Sales Inventory
view

model client

TCPconnector

server
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So, what is an architectural description
language?

It is a notation (linear or graphical) for specifying an architecture.

It should specify

� structure: components (interfaces), connectors (protocols),
configuration (both static and dynamic structure)

� behavior: semantical properties of individual components and

connectors, patterns of acceptable communication, global
invariants,

� design patterns: global constraints that support
correctness-reasoning techniques, design- and run-time tool

support, and implementation.

But it is difficult to design a general-purpose architectural description

language that is elegant, expressive, and useful.
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5. Domain-specific design
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Domain-specific design

If the problem domain is a standard one (e.g., flight-control or

telecommunications or banking), then there are precedents to follow.

A Domain-Specific Software Architecture has

� a domain: defines the problem area domain concepts and terminology;

customer requirements; scenarios; configuration models (entity-relationship,

data flow, etc.)

� reference requirements: features that restrict solutions to fit the

domain. (“Features” are studied shortly.) Also: platform, language, user

interface, security, performance

� a reference architecture

� a supporting environment/infrastructure: tools for modelling,

design, implementation, evaluation; run-time platform

� a process or methodology to implement the reference

architecture and evaluate it.
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from Medvidovic’s course, http://sunset.usc.edu/classes/cs578 2002
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Domain-specific (modelling) language (DSL)

is a modelling language specialized to a specific problem domain,
e.g., telecommunications, banking, transportation.

We use a DSL to describe a problem and its solution in concepts
familiar to people who work in the domain.

It might define (entity-relationship) models, ontologies (class
hierarchies), scenarios, architectures, and implementations.

Example: a DSL for sensor-alarm networks: domains: sites (building, floor,

hallway, room), devices (alarm, movement detector, camera, badge), people

(employee, guard, police, intruder). Domain elements have features/attributes and

operations. Actions can be by initiated by events — “when a movement detector

detects an intruder in a room, it generates a movement-event for a camera and

sends a message to a guard....”

When a DSL can generate computer implementations, it is a
domain-specific programming language.
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Domain-specific programming language

In the Unix world, these are “little languages” or “mini-languages,”

designed to solve a specific class of problems. Examples are awk,

make, lex, yacc, ps, and Glade (for GUI-building in X).

Other examples are Excel, HTML, XML, SQL, regular-expression

notation and BNF. These are called top-down DSLs, because they are

designed to implement domain concepts and nothing more.

Non-programmers can use a top-down DSL to write solutions.

The bottom-up approach, called embedded or in-language DSL,

starts with a dynamic-data-structure language, like Scheme or Perl or

Python, and adds libraries (modules) of functions that encode

domain-concepts-as-code, thus “building the language upwards

towards the problem to be solved.” Experienced programmers use

bottom-up DSLs to program solutions.
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Tradeoffs in using (top-down) DSLs

✔ non-programmers can discuss and use the DSL

✔ the DSL supports patterns of design, implementation, and

optimization

✔ fast development

✘ staff must be trained to use the DSL

✘ interaction of DSL-generated software with other software

components can be difficult

✘ there is high cost in developing and maintaining a DSL

Reference: J. Lawall and T. Mogensen. Course on Scripting Languages and DSLs,

Univ. Copenhagen, 2006, www.diku.dk/undervisning/2006f/213

(-: / 59



6. Software product lines
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A software product line

is also called a software system family — a collection of software
products that share an architecture and components, constructed by
a product line. They are inspired by the products produced by
industrial assembly lines, e.g., automobiles.

The CMU Software Engineering Institute definition:

A product line is a set of software intensive systems that
(i) share a common set of features,

(ii) satisfy the needs of a particular mission, and
(iii) are developed from a set of core assets in a prescribed w ay.

Key issues:
variability: Can we state precisely the products’ variations (features) ?
guidance: Is there a precise recipe that guides feature selection and
product assembly?

Reference: www.softwareproductlines.com
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An example product line: Cummins Corporation

produces diesel engines for trucks and heavy machinery. An engine

controller has 100K-200K lines-of-code. At level of 12 engine “builds,”

company switched to a product line approach:

1. defined engine controller domain

2. defined a reference architecture

3. built reusable components

4. required all teams to follow product line approach

Cummins now produces 20 basic “builds” — 1000 products total;

development time dropped from 250 person/months to < 10. A new

controller consists of 75% reused software.

Reference: S. Cohen. Product line practice state of the art report.

CMU/SEI-2002-TN-017.
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Features and feature diagrams

are a development tool for domain-specific architectures and product

lines. They help define a domain’s reference requirements and guide

implementions of instances of the reference architecture.

A feature is merely a property of the domain. (Example: the

features/options/choices of an automobile that you order from the

factory.)

A feature diagram displays the features and guides a user in choosing

features for the solution to a domain problem.

It is a form of decision tree with and-or-xor branching, and its

hierarchy reflects dependencies of features as well as modification

costs.
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Feature diagram for assembling automobiles

enginetransmission

manualautomatic electric gasoline

pullsTrailorbody

car

Filled circles label required features; unfilled circles label optional

ones. Filled arcs label xor-choices; unfilled arcs label or-choices

(where at least one choice is selected).

Here is one possible outcome of “executing” the feature diagram:

car

manual transmission

engine

gaselectric

body
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Feature diagrams work well for configuring generic data structures:

−morphism

list

mono− poly−

ownership

copy reference

Compare the diagram to the typical class-library representation of a

generic list structure.

An advantage of a feature-diagram construction of a list structure over

a class-library construction is that the former can generate a smaller,

more efficient list structure, customized to exactly the choices of the

client.
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Feature diagrams are useful for both constraining as well as

generating an architecture: the feature requirements are displayed in

a feature diagram, which guides the user to generating the desired

instance of the reference architecture.

Feature diagrams are an attempt at making software assembly appear

similar to assembly of mass-produced products like automobiles.

In particular, feature diagrams encourage the use of standardized,

parameterized, reusable software components.

Feature diagrams might be implemented by a tool that selects

components according to feature selection. Or, they might be

implemented within the structure of a domain-specific programming

language whose programs select and assemble features.

Reference: K. Czarnecki and U. Eisenecker. Generative Programming.

Addison-Wesley 2000.
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Generative programming

is the name given to the application of programs that generate other

programs (cf. “automatic programming” in the 1950s). A compiler is of

course a generating program, but so are feature-diagram-driven

frameworks, partial evaluators, and some development environments

(e.g., for Java beans).

Reference: Coming attractions in software architecture, P. Clements. CMU/SEI-96-TR-008.
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Generative programming is motivated by the belief that conventional
software production methods (even those based on “object-oriented”
methodologies) will never support component reuse:

Reference: Jan Bosch. Design and Use of Software Architectures. Addison-Wesley, 2000.

One solution is to understand a software system as a customized
product, produced by generative programming, from a product line.

Reference: K. Czarnecki and U. Eisenecker. Generative Programming.

Addison-Wesley 2000.
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10. Final Remarks
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Reference: Jan Bosch. Design and Use of Software Architectures. Addison-Wesley,

2000.
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